554 research outputs found

    Synthesis of polycalciumphenylsiloxane and composites based on the skeleton of a sea urchin with the resulting polymer

    Get PDF
    In this work, we obtained polycalciumphenylsiloxane (PCPS) by the interaction of calcium bis (acetylacetonate) with polyphenylsiloxane. The first method consisted in boiling the starting reagents in toluene for several hours; the second was as follows: the mixture of the starting reagents was preliminarily treated mechanically in a ball mill, followed by boiling in toluene for several hours. Two fractions, soluble and insoluble, were isolated in both syntheses. They were investigated using IR, NMR spectroscopy, thermogravimetric analysis, and gel permeation chromatography. It was shown that the insoluble fraction is a mixture of calcium acetylacetonate and polyphenylsiloxane with a small calcium ion content. The soluble fraction is polycalciumphenylsiloxane. The yield of the soluble fraction is higher in the second synthesis method. The polymers obtained in the first and second synthesis methods are similar in composition and structure, which was confirmed by physicochemical methods. Next, the skeleton of the sea urchin Strongylocentrotus intermedius was treated with a soluble fraction in toluene. In this case, a composite was obtained, which was treated with 2–3% hydrochloric acid and then calcined at a temperature of 600 °C. At each stage, the composition of the composites was investigated using elemental analysis and IR spectroscopy. The morphology was investigated using scanning electron microscopy

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D)B(BˉDτνˉτ)/B(BˉDμνˉμ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)B(BD0τνˉτ)/B(BD0μνˉμ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τμντνˉμ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Substituted beta-diketonates of Metals and Polyheterosiloxanes Based thereon

    No full text
    Available from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio

    Observation of an excited Bc+B_c^+ state

    No full text
    International audienceUsing pp collision data corresponding to an integrated luminosity of 8.5  fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+)  MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc*(2S31)+ state reconstructed without the low-energy photon from the Bc*(1S31)+→Bc+γ decay following Bc*(2S31)+→Bc*(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+)  MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date

    Amplitude analysis of the B(s)0K0K0B^0_{(s)} \to K^{*0} \overline{K}^{*0} decays and measurement of the branching fraction of the B0K0K0B^0 \to K^{*0} \overline{K}^{*0} decay

    No full text
    International audienceThe B0K0K0 {B}^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} and Bs0K0K0 {B}_s^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} decays are studied using proton-proton collision data corresponding to an integrated luminosity of 3 fb1^{−1}. An untagged and timeintegrated amplitude analysis of B_{( s}_{)}^{0}  → (K+^{+}π^{−})(K^{−}π+^{+}) decays in two-body invariant mass regions of 150 MeV/c2^{2} around the K0^{∗0} mass is performed. A stronger longitudinal polarisation fraction in the B0K0K0 {B}^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} decay, fL_{L} = 0.724 ± 0.051 (stat) ± 0.016 (syst), is observed as compared to fL_{L} = 0.240 ± 0.031 (stat) ± 0.025 (syst) in the Bs0K0K0 {B}_s^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0} decay. The ratio of branching fractions of the two decays is measured and used to determine B(B0K0K0)=(8.0±0.9(stat)±0.4(syst))×107 \mathrm{\mathcal{B}}\left({B}^0\to {K}^{\ast 0}{\overline{K}}^{\ast 0}\right)=\left(8.0\pm 0.9\left(\mathrm{stat}\right)\pm 0.4\left(\mathrm{syst}\right)\right)\times {10}^{-7}

    Measurement of CPCP-violating and mixing-induced observables in Bs0ϕγB_s^0 \to \phi\gamma decays

    No full text
    International audienceA time-dependent analysis of the Bs0→ϕγ decay rate is performed to determine the CP -violating observables Sϕγ and Cϕγ and the mixing-induced observable AϕγΔ. The measurement is based on a sample of pp collision data recorded with the LHCb detector, corresponding to an integrated luminosity of 3  fb-1 at center-of-mass energies of 7 and 8 TeV. The measured values are Sϕγ=0.43±0.30±0.11, Cϕγ=0.11±0.29±0.11, and AϕγΔ=-0.67-0.41+0.37±0.17, where the first uncertainty is statistical and the second systematic. This is the first measurement of the observables S and C in radiative Bs0 decays. The results are consistent with the standard model predictions
    corecore