30,144 research outputs found

    Start-stop testing of two self-acting air-lubricated spiral groove thrust bearing coatings

    Get PDF
    Start-stop tests were conducted on air-lubricated spiral-groove thrust bearings. Application of a matrix-bonded molybdenum disulfide (MoS2) coating over a porous chrome oxide coating resulted in significantly lower friction, compared to bearings coated with chrome oxide only. The MoS2 coated bearing sustained 15,000 start-stop cycles at a maximum of 3600 rpm. Each cycle was 15 seconds on, 30 seconds off. The chrome oxide coated bearing failed by local welding after 2030 cycles. Both types of coatings exhibited early failures under higher thrust loads when operating films were insufficient to sustain the load without overheating

    Cosmologies with variable parameters and dynamical cosmon: implications on the cosmic coincidence problem

    Get PDF
    Dynamical dark energy (DE) has been proposed to explain various aspects of the cosmological constant (CC) problem(s). For example, it is very difficult to accept that a strictly constant Lambda-term constitutes the ultimate explanation for the DE in our Universe. It is also hard to acquiesce in the idea that we accidentally happen to live in an epoch where the CC contributes an energy density value right in the ballpark of the rapidly diluting matter density. It should perhaps be more plausible to conceive that the vacuum energy, is actually a dynamical quantity as the Universe itself. More generally, we could even entertain the possibility that the total DE is in fact a mixture of vacuum energy and other dynamical components (e.g. fields, higher order terms in the effective action etc) which can be represented collectively by an effective entity X (dubbed the ``cosmon''). The ``cosmon'', therefore, acts as a dynamical DE component different from the vacuum energy. While it can actually behave phantom-like by itself, the overall DE fluid may effectively appear as standard quintessence, or even mimic at present an almost exact CC behavior. Thanks to the versatility of such cosmic fluid we can show that a composite DE system of this sort (``LXCDM'') may have a key to resolving the mysterious coincidence problem.Comment: LaTeX, 13 pages, 5 figure

    Reflective Ghost Imaging through Turbulence

    Full text link
    Recent work has indicated that ghost imaging may have applications in standoff sensing. However, most theoretical work has addressed transmission-based ghost imaging. To be a viable remote-sensing system, the ghost imager needs to image rough-surfaced targets in reflection through long, turbulent optical paths. We develop, within a Gaussian-state framework, expressions for the spatial resolution, image contrast, and signal-to-noise ratio of such a system. We consider rough-surfaced targets that create fully developed speckle in their returns, and Kolmogorov-spectrum turbulence that is uniformly distributed along all propagation paths. We address both classical and nonclassical optical sources, as well as a computational ghost imager.Comment: 13 pages, 3 figure

    Dark energy: a quantum fossil from the inflationary Universe?

    Full text link
    The discovery of dark energy (DE) as the physical cause for the accelerated expansion of the Universe is the most remarkable experimental finding of modern cosmology. However, it leads to insurmountable theoretical difficulties from the point of view of fundamental physics. Inflation, on the other hand, constitutes another crucial ingredient, which seems necessary to solve other cosmological conundrums and provides the primeval quantum seeds for structure formation. One may wonder if there is any deep relationship between these two paradigms. In this work, we suggest that the existence of the DE in the present Universe could be linked to the quantum field theoretical mechanism that may have triggered primordial inflation in the early Universe. This mechanism, based on quantum conformal symmetry, induces a logarithmic, asymptotically-free, running of the gravitational coupling. If this evolution persists in the present Universe, and if matter is conserved, the general covariance of Einstein's equations demands the existence of dynamical DE in the form of a running cosmological term whose variation follows a power law of the redshift.Comment: LaTeX, 14 pages, extended discussion. References added. Accepted in J. Phys. A: Mathematical and Theoretica

    Gambling Alone? A Study of Solitary and Social Gambling in America

    Full text link
    In his acclaimed 2000 book Bowling Alone, Robert Putnam documents a disturbing social trend of the broadest kind. Putnam cites a wide variety of data that indicate that over the past fifty years, Americans have become increasingly socially disengaged. In developing this theme, Putnam specifically cites the increase in casino gambling (and especially machine gambling) as evidence in support of his argument. Building on the empirical and theoretical work of Putnam, this exploratory article examines the subphenomenon of gambling alone by exploring sample survey data on solitary and social gambling behavior among adults who reside in Las Vegas, Nevada. Specifically, to further understand these phenomena, a number of demographic, attitudinal, and behavioral variables are examined for their explanatory power in predicting solitary vs. social gambling behavior

    Automatic structures, rational growth and geometrically finite hyperbolic groups

    Full text link
    We show that the set SA(G)SA(G) of equivalence classes of synchronously automatic structures on a geometrically finite hyperbolic group GG is dense in the product of the sets SA(P)SA(P) over all maximal parabolic subgroups PP. The set BSA(G)BSA(G) of equivalence classes of biautomatic structures on GG is isomorphic to the product of the sets BSA(P)BSA(P) over the cusps (conjugacy classes of maximal parabolic subgroups) of GG. Each maximal parabolic PP is a virtually abelian group, so SA(P)SA(P) and BSA(P)BSA(P) were computed in ``Equivalent automatic structures and their boundaries'' by M.Shapiro and W.Neumann, Intern. J. of Alg. Comp. 2 (1992) We show that any geometrically finite hyperbolic group has a generating set for which the full language of geodesics for GG is regular. Moreover, the growth function of GG with respect to this generating set is rational. We also determine which automatic structures on such a group are equivalent to geodesic ones. Not all are, though all biautomatic structures are.Comment: Plain Tex, 26 pages, no figure

    Improved sampling of the pareto-front in multiobjective genetic optimizations by steady-state evolution: a Pareto converging genetic algorithm

    Get PDF
    Previous work on multiobjective genetic algorithms has been focused on preventing genetic drift and the issue of convergence has been given little attention. In this paper, we present a simple steady-state strategy, Pareto Converging Genetic Algorithm (PCGA), which naturally samples the solution space and ensures population advancement towards the Pareto-front. PCGA eliminates the need for sharing/niching and thus minimizes heuristically chosen parameters and procedures. A systematic approach based on histograms of rank is introduced for assessing convergence to the Pareto-front, which, by definition, is unknown in most real search problems. We argue that there is always a certain inheritance of genetic material belonging to a population, and there is unlikely to be any significant gain beyond some point; a stopping criterion where terminating the computation is suggested. For further encouraging diversity and competition, a nonmigrating island model may optionally be used; this approach is particularly suited to many difficult (real-world) problems, which have a tendency to get stuck at (unknown) local minima. Results on three benchmark problems are presented and compared with those of earlier approaches. PCGA is found to produce diverse sampling of the Pareto-front without niching and with significantly less computational effort

    Recruitment Market Trend Analysis with Sequential Latent Variable Models

    Full text link
    Recruitment market analysis provides valuable understanding of industry-specific economic growth and plays an important role for both employers and job seekers. With the rapid development of online recruitment services, massive recruitment data have been accumulated and enable a new paradigm for recruitment market analysis. However, traditional methods for recruitment market analysis largely rely on the knowledge of domain experts and classic statistical models, which are usually too general to model large-scale dynamic recruitment data, and have difficulties to capture the fine-grained market trends. To this end, in this paper, we propose a new research paradigm for recruitment market analysis by leveraging unsupervised learning techniques for automatically discovering recruitment market trends based on large-scale recruitment data. Specifically, we develop a novel sequential latent variable model, named MTLVM, which is designed for capturing the sequential dependencies of corporate recruitment states and is able to automatically learn the latent recruitment topics within a Bayesian generative framework. In particular, to capture the variability of recruitment topics over time, we design hierarchical dirichlet processes for MTLVM. These processes allow to dynamically generate the evolving recruitment topics. Finally, we implement a prototype system to empirically evaluate our approach based on real-world recruitment data in China. Indeed, by visualizing the results from MTLVM, we can successfully reveal many interesting findings, such as the popularity of LBS related jobs reached the peak in the 2nd half of 2014, and decreased in 2015.Comment: 11 pages, 30 figure, SIGKDD 201

    Why Do Computers Depreciate?

    Get PDF
    The value of installed computers falls rapidly and therefore computers have a very high user cost. The paper provides a complete account of the non-financial user cost of personal computers -- decomposing it into replacement cost change, obsolescence, instantaneous depreciation, and age-related depreciation. The paper uses data on the resale price of computers and a hedonic price index for new computers to achieve this decomposition. Once obsolescence is taken into account, age-related depreciation -- which is often identified as deterioration -- is estimated to be negligible. While the majority of the loss in value of used computers comes from declines in replacement cost, this paper shows the second most important source of decline in value is obsolescence. Obsolescence is accelerated by the decline in replacement cost of computers. Cheaper computing power drives developments in software and networks that make older computers less productive even though their original functionality remains intact.
    • …
    corecore