research

Automatic structures, rational growth and geometrically finite hyperbolic groups

Abstract

We show that the set SA(G)SA(G) of equivalence classes of synchronously automatic structures on a geometrically finite hyperbolic group GG is dense in the product of the sets SA(P)SA(P) over all maximal parabolic subgroups PP. The set BSA(G)BSA(G) of equivalence classes of biautomatic structures on GG is isomorphic to the product of the sets BSA(P)BSA(P) over the cusps (conjugacy classes of maximal parabolic subgroups) of GG. Each maximal parabolic PP is a virtually abelian group, so SA(P)SA(P) and BSA(P)BSA(P) were computed in ``Equivalent automatic structures and their boundaries'' by M.Shapiro and W.Neumann, Intern. J. of Alg. Comp. 2 (1992) We show that any geometrically finite hyperbolic group has a generating set for which the full language of geodesics for GG is regular. Moreover, the growth function of GG with respect to this generating set is rational. We also determine which automatic structures on such a group are equivalent to geodesic ones. Not all are, though all biautomatic structures are.Comment: Plain Tex, 26 pages, no figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 23/03/2019