65 research outputs found

    The Integrative Effects of Cognitive Reappraisal on Negative Affect: Associated Changes in Secretory Immunoglobulin A, Unpleasantness and ERP Activity

    Get PDF
    Although the regulatory role of cognitive reappraisal in negative emotional responses is widely recognized, this reappraisal's effect on acute saliva secretory immunoglobulin A (SIgA), as well as the relationships among affective, immunological, and event-related potential (ERP) changes, remains unclear. In this study, we selected only people with low positive coping scores (PCSs) as measured by the Trait Coping Style Questionnaire to avoid confounding by intrinsic coping styles. First, we found that the acute stress of viewing unpleasant pictures consistently decreased SIgA concentration and secretion rate, increased perceptions of unpleasantness and amplitude of late positive potentials (LPPs) between 200–300 ms and 400–1000 ms. After participants used cognitive reappraisal, their SIgA concentration and secretion rate significantly increased and their unpleasantness and LPP amplitudes significantly decreased compared with a control condition. Second, we found a significantly positive correlation between the increases in SIgA and the decreases in unpleasantness and a significantly negative correlation between the increases in SIgA and the increases in LPP across the two groups. This study is the first to demonstrate that cognitive reappraisal reverses the decrease of SIgA. In addition, it revealed strong correlations among affective, SIgA and electrophysiological changes with convergent multilevel evidence

    Can Sophie's Choice Be Adequately Captured by Cold Computation of Minimizing Losses? An fMRI Study of Vital Loss Decisions

    Get PDF
    The vast majority of decision-making research is performed under the assumption of the value maximizing principle. This principle implies that when making decisions, individuals try to optimize outcomes on the basis of cold mathematical equations. However, decisions are emotion-laden rather than cool and analytic when they tap into life-threatening considerations. Using functional magnetic resonance imaging (fMRI), this study investigated the neural mechanisms underlying vital loss decisions. Participants were asked to make a forced choice between two losses across three conditions: both losses are trivial (trivial-trivial), both losses are vital (vital-vital), or one loss is trivial and the other is vital (vital-trivial). Our results revealed that the amygdala was more active and correlated positively with self-reported negative emotion associated with choice during vital-vital loss decisions, when compared to trivial-trivial loss decisions. The rostral anterior cingulate cortex was also more active and correlated positively with self-reported difficulty of choice during vital-vital loss decisions. Compared to the activity observed during trivial-trivial loss decisions, the orbitofrontal cortex and ventral striatum were more active and correlated positively with self-reported positive emotion of choice during vital-trivial loss decisions. Our findings suggest that vital loss decisions involve emotions and cannot be adequately captured by cold computation of minimizing losses. This research will shed light on how people make vital loss decisions

    DPHL: A DIA Pan-human Protein Mass Spectrometry Library for Robust Biomarker Discovery

    Get PDF
    To address the increasing need for detecting and validating protein biomarkers in clinical specimens, mass spectrometry (MS)-based targeted proteomic techniques, including the selected reaction monitoring (SRM), parallel reaction monitoring (PRM), and massively parallel data-independent acquisition (DIA), have been developed. For optimal performance, they require the fragment ion spectra of targeted peptides as prior knowledge. In this report, we describe a MS pipeline and spectral resource to support targeted proteomics studies for human tissue samples. To build the spectral resource, we integrated common open-source MS computational tools to assemble a freely accessible computational workflow based on Docker. We then applied the workflow to generate DPHL, a comprehensive DIA pan-human library, from 1096 data-dependent acquisition (DDA) MS raw files for 16 types of cancer samples. This extensive spectral resource was then applied to a proteomic study of 17 prostate cancer (PCa) patients. Thereafter, PRM validation was applied to a larger study of 57 PCa patients and the differential expression of three proteins in prostate tumor was validated. As a second application, the DPHL spectral resource was applied to a study consisting of plasma samples from 19 diffuse large B cell lymphoma (DLBCL) patients and 18 healthy control subjects. Differentially expressed proteins between DLBCL patients and healthy control subjects were detected by DIA-MS and confirmed by PRM. These data demonstrate that the DPHL supports DIA and PRM MS pipelines for robust protein biomarker discovery. DPHL is freely accessible at https://www.iprox.org/page/project.html?id=IPX0001400000

    Electrophysiological signatures of hierarchical learning

    No full text
    Human perception and learning is thought to rely on a hierarchical generative model that is continuously updated via precision-weighted prediction errors (pwPEs). However, the neural basis of such cognitive process and how it unfolds during decision-making remain poorly understood. To investigate this question, we combined a hierarchical Bayesian model (i.e., Hierarchical Gaussian Filter [HGF]) with electroencephalography (EEG), while participants performed a probabilistic reversal learning task in alternatingly stable and volatile environments. Behaviorally, the HGF fitted significantly better than two control, nonhierarchical, models. Neurally, low-level and high-level pwPEs were independently encoded by the P300 component. Low-level pwPEs were reflected in the theta (4-8 Hz) frequency band, but high-level pwPEs were not. Furthermore, the expressions of high-level pwPEs were stronger for participants with better HGF fit. These results indicate that the brain employs hierarchical learning and encodes both low- and high-level learning signals separately and adaptively

    Long-term academic stress enhances early processing of facial expressions

    No full text
    Exposure to long-term stress can lead to a variety of emotional and behavioral problems. Although widely investigated, the neural basis of how long-term stress impacts emotional processing in humans remains largely elusive. Using event-related brain potentials (ERPs), we investigated the effects of long-term stress on the neural dynamics of emotionally facial expression processing. Thirty-nine male college students undergoing preparation for a major examination and twenty-one matched controls performed a gender discrimination task for faces displaying angry, happy, and neutral expressions. The results of the Perceived Stress Scale showed that participants in the stress group perceived higher levels of long-term stress relative to the control group. ERP analyses revealed differential effects of long-term stress on two early stages of facial expression processing: 1) long-term stress generally augmented posterior P1 amplitudes to facial stimuli irrespective of expression valence, suggesting that stress can increase sensitization to visual inputs in general, and 2) long-term stress selectively augmented fronto-central P2 amplitudes for angry but not for neutral or positive facial expressions, suggesting that stress may lead to increased attentional prioritization to processing negative emotional stimuli. Together, our findings suggest that long-term stress has profound impacts on the early stages of facial expression processing, with an increase at the very early stage of general information inputs and a subsequent attentional bias toward processing emotionally negative stimuli. (C) 2016 Elsevier B.V. All rights reserved.</p

    Neural mechanisms of recognizing scene configurations from multiple viewpoints.

    No full text
    Contains fulltext : 89573.pdf (publisher's version ) (Closed access)Using functional magnetic resonance imaging (fMRI), the present study examined the neural mechanisms involved in recognizing spatial configurations of a scene from multiple viewpoints. Prior to scanning, participants were instructed to learn a desktop array of seven objects relative to an intrinsic direction that was different from the participants' viewpoint. During scanning, participants recognized triplets of objects from the previously memorized scene and from a mirror reflection of the scene at different perspectives. Half of the triplets included two objects located along the instructed intrinsic direction (intrinsic triplets) and the other half did not (non-intrinsic triplets). Consistent with previous mental rotation studies, bilateral intraparietal sulcus and bilateral middle frontal gyrus showed increasing activation with the angular disparity between the test view and the study view. The right intraparietal sulcus was more activated to the non-intrinsic triplets than the intrinsic triplets. The anterior cingulate cortex was more deactivated in recognizing non-intrinsic triplets and novel views. These findings are consistent with the behavioral results that recognition was easier for intrinsic triplets than for non-intrinsic triplets and easier for the familiar view than for novel views (Mou et al., 2008a)

    Negative Parenting Affects Adolescent Internalizing Symptoms Through Alterations in Amygdala-Prefrontal Circuitry: A Longitudinal Twin Study

    No full text
    BACKGROUND: The synergic interaction of risk genes and environmental factors has been thought to play a critical role in mediating emotion-related brain circuitry function and dysfunction in depression and anxiety disorders. Little, however, is known regarding neurodevelopmental bases underlying how maternal negative parenting affects emotion-related brain circuitry linking to adolescent internalizing symptoms and whether this neurobehavioral association is heritable during adolescence. METHODS: The effects of maternal parenting on amygdala-based emotional circuitry and internalizing symptoms were examined by using longitudinal functional magnetic resonance imaging among 100 monozygotic twins and 78 dizygotic twins from early adolescence (age 13 years) to mid-adolescence (age 16 years). The mediation effects among variables of interest and their heritability were assessed by structural equation modeling and quantitative genetic analysis, respectively. RESULTS: Exposure to maternal negative parenting was positively predictive of stronger functional connectivity of the amygdala with the ventrolateral prefrontal cortex. This neural pathway mediated the association between negative parenting and adolescent depressive symptoms and exhibited moderate heritability (21%). CONCLUSIONS: These findings highlight that maternal negative parenting in early adolescence is associated with the development of atypical amygdala-prefrontal connectivity in relation to internalizing depressive symptoms in midadolescence. Such abnormality of emotion-related brain circuitry is heritable to a moderate degree.</p

    The hierarchical sensitivity to social misalignment during decision-making under uncertainty

    No full text
    Social misalignment occurs when a person&#39;s attitudes and opinions deviate from those of others. We investigated how individuals react to social misalignment in risky (outcome probabilities are known) or ambiguous (outcome probabilities are unknown) decision contexts. During each trial, participants played a forced-choice gamble, and they observed the decisions of four other players after they made a tentative decision, followed by an opportunity to keep or change their initial decision. Behavioral and event-related potential data were collected. Behaviorally, the stronger the participants&#39; initial preference, the less likely they were to switch their decisions, whereas the more their decisions were misaligned with the majority, the more likely they were to switch. Electrophysiological results showed a hierarchical processing pattern of social misalignment. Misalignment was first detected binarily (i.e. match/mismatch) at an early stage, as indexed by the N1 component. During the second stage, participants became sensitive to low levels of misalignment, which were indexed by the feedback-related negativity. The degree of social misalignment was processed in greater detail, as indexed by the P3 component. Moreover, such hierarchical neural sensitivity is generalizable across different decision contexts (i.e. risky and ambiguous). These findings demonstrate a fine-grained neural sensitivity to social misalignment during decision-making under uncertainty.</p
    corecore