101 research outputs found

    A genome-wide BAC-end sequence survey provides first insights into sweetpotato (Ipomoea batatas (L.) Lam.) genome composition

    Get PDF
    The BLASTX searching results of 4428 BESs with protein databases of V. vinifera. (XLS 400 kb

    De Novo

    Get PDF
    Sweet potato, Ipomoea batatas (L.) Lam., is an important food crop worldwide. The orange-fleshed sweet potato is considered to be an important source of beta-carotene. In this study, the transcriptome profiles of an orange-fleshed sweet potato cultivar “Weiduoli” and its mutant “HVB-3” with high carotenoid content were determined by using the high-throughput sequencing technology. A total of 13,767,387 and 9,837,090 high-quality reads were produced from Weiduoli and HVB-3, respectively. These reads were de novo assembled into 58,277 transcripts and 35,909 unigenes with an average length of 596 bp and 533 bp, respectively. In all, 874 differentially expressed genes (DEGs) were obtained between Weiduoli and HVB-3, 401 of which were upregulated and 473 were downregulated in HVB-3 compared to Weiduoli. Of the 697 DEGs annotated, 316 DEGs had GO terms and 62 DEGs were mapped onto 50 pathways. The 22 DEGs and 31 transcription factors involved in carotenoid biosynthesis were identified between Weiduoli and HVB-3. In addition, 1,725 SSR markers were detected. This study provides the genomic resources for discovering the genes involved in carotenoid biosynthesis of sweet potato and other plants

    Mutations in TUBB8 and Human Oocyte Meiotic Arrest

    Get PDF
    BACKGROUND Human reproduction depends on the fusion of a mature oocyte with a sperm cell to form a fertilized egg. The genetic events that lead to the arrest of human oocyte maturation are unknown. METHODS We sequenced the exomes of five members of a four-generation family, three of whom had infertility due to oocyte meiosis I arrest. We performed Sanger sequencing of a candidate gene, TUBB8, in DNA samples from these members, additional family members, and members of 23 other affected families. The expression of TUBB8 and all other β-tubulin isotypes was assessed in human oocytes, early embryos, sperm cells, and several somatic tissues by means of a quantitative reverse- transcriptase–polymerase-chain-reaction assay. We evaluated the effect of the TUBB8 mutations on the assembly of the heterodimer consisting of one α-tubulin polypeptide and one β-tubulin polypeptide (α/β-tubulin heterodimer) in vitro, on microtubule architecture in HeLa cells, on microtubule dynamics in yeast cells, and on spindle assembly in mouse and human oocytes. RESULTS We identified seven mutations in the primate-specific gene TUBB8 that were responsible for oocyte meiosis I arrest in 7 of the 24 families. TUBB8 expression is unique to oocytes and the early embryo, in which this gene accounts for almost all the expressed β-tubulin. The mutations affect chaperone-dependent folding and assembly of the α/β-tubulin heterodimer, disrupt microtubule behavior on expression in cultured cells, alter microtubule dynamics in vivo, and cause catastrophic spindle-assembly defects and maturation arrest on expression in mouse and human oocytes. CONCLUSIONS TUBB8 mutations have dominant-negative effects that disrupt microtubule behavior and oocyte meiotic spindle assembly and maturation, causing female infertility. (Funded by the National Basic Research Program of China and others.

    Amyloid and SCD jointly predict cognitive decline across Chinese and German cohorts.

    Get PDF
    INTRODUCTION Subjective cognitive decline (SCD) in amyloid-positive (Aβ+) individuals was proposed as a clinical indicator of Stage 2 in the Alzheimer's disease (AD) continuum, but this requires further validation across cultures, measures, and recruitment strategies. METHODS Eight hundred twenty-one participants from SILCODE and DELCODE cohorts, including normal controls (NC) and individuals with SCD recruited from the community or from memory clinics, underwent neuropsychological assessments over up to 6 years. Amyloid positivity was derived from positron emission tomography or plasma biomarkers. Global cognitive change was analyzed using linear mixed-effects models. RESULTS In the combined and stratified cohorts, Aβ+ participants with SCD showed steeper cognitive decline or diminished practice effects compared with NC or Aβ- participants with SCD. These findings were confirmed using different operationalizations of SCD and amyloid positivity, and across different SCD recruitment settings. DISCUSSION Aβ+ individuals with SCD in German and Chinese populations showed greater global cognitive decline and could be targeted for interventional trials. HIGHLIGHTS SCD in amyloid-positive (Aβ+) participants predicts a steeper cognitive decline. This finding does not rely on specific SCD or amyloid operationalization. This finding is not specific to SCD patients recruited from memory clinics. This finding is valid in both German and Chinese populations. Aβ+ older adults with SCD could be a target population for interventional trials

    Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst

    Full text link
    The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to 150 keV\rm 150~keV. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with B1013 GB\rm \sim 10^{13}~G, D6 kpcD\rm \sim 6~kpc and peak luminosity of >1039 erg s1\rm >10^{39}~erg~s^{-1} which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.Comment: publishe

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443

    The complete mitochondrial genome of Phloeosinus perlatus Chapuis, 1875 (Coleoptera: Scolytinae)

    No full text
    Phloeosinus perlatus Chapuis, 1875 (Coleoptera: Scolytinae) is a major boring pest of Chinese firs. The length of the complete mitochondria genome of P. perlatus was 17,054 bp with 29.7% GC content, including 30.0% A, 11.3% C, 18.4% G and 40.3% T. The genome encoded 13 protein-coding genes, 22 tRNAs, and 2 rRNAs. Phylogenetic analysis showed that P. perlatus was closely related to Scolytus seulensis. This study provided useful genetic information for the subsequent studying the prevention of P. perlatus

    De Novo Transcriptome Sequencing of the Orange-Fleshed Sweet Potato and Analysis of Differentially Expressed Genes Related to Carotenoid Biosynthesis

    No full text
    Sweet potato, Ipomoea batatas (L.) Lam., is an important food crop worldwide. The orange-fleshed sweet potato is considered to be an important source of beta-carotene. In this study, the transcriptome profiles of an orange-fleshed sweet potato cultivar “Weiduoli” and its mutant “HVB-3” with high carotenoid content were determined by using the high-throughput sequencing technology. A total of 13,767,387 and 9,837,090 high-quality reads were produced from Weiduoli and HVB-3, respectively. These reads were de novo assembled into 58,277 transcripts and 35,909 unigenes with an average length of 596 bp and 533 bp, respectively. In all, 874 differentially expressed genes (DEGs) were obtained between Weiduoli and HVB-3, 401 of which were upregulated and 473 were downregulated in HVB-3 compared to Weiduoli. Of the 697 DEGs annotated, 316 DEGs had GO terms and 62 DEGs were mapped onto 50 pathways. The 22 DEGs and 31 transcription factors involved in carotenoid biosynthesis were identified between Weiduoli and HVB-3. In addition, 1,725 SSR markers were detected. This study provides the genomic resources for discovering the genes involved in carotenoid biosynthesis of sweet potato and other plants

    A Novel Sweetpotato WRKY Transcription Factor, IbWRKY2, Positively Regulates Drought and Salt Tolerance in Transgenic Arabidopsis

    No full text
    WRKYs play important roles in plant growth, defense regulation, and stress response. However, the mechanisms through which WRKYs are involved in drought and salt tolerance have been rarely characterized in sweetpotato [Ipomoea batatas (L.) Lam.]. In this study, we cloned a WRKY gene, IbWRKY2, from sweetpotato and its expression was induced with PEG6000, NaCl, and abscisic acid (ABA). The IbWRKY2 was localized in the nucleus. The full-length protein exhibited transactivation activity, and its active domain was located in the N-terminal region. IbWRKY2-overexpressing Arabidopsis showed enhanced drought and salt tolerance. After drought and salt treatments, the contents of ABA and proline as well as the activity of superoxide dismutase (SOD) were higher in transgenic plants, while the malondialdehyde (MDA) and H2O2 contents were lower. In addition, several genes related to the ABA signaling pathway, proline biosynthesis, and the reactive oxygen species (ROS)-scavenging system, were significantly up-regulated in transgenic lines. These results demonstrate that IbWRKY2 confers drought and salt tolerance in Arabidopsis. Furthermore, IbWRKY2 was able to interact with IbVQ4, and the expression of IbVQ4 was induced by drought and salt treatments. These results provide clues regarding the mechanism by which IbWRKY2 contributes to the regulation of abiotic stress tolerance
    corecore