410 research outputs found

    High level of miR-196b at newly diagnosed pediatric acute myeloid leukemia predicts a poor outcome

    Get PDF
    Differential expression of microRNAs (miRNAs) has been implicated in leukemogenesis. We investigate the ex- pression pattern of miR-196b. Using quantitative real-time PCR (qRT-PCR), we detected the expression of miR- 196b and its correlated genes (SMC1A/MLH1) in initial pediatric AML. A significant association was observed between overexpression of miR-196b and inferior overall survival of pediatric AML (Log Rank P<0.0001). AML M4/5 subtype, high white blood cell (WBC) count at presentation, MLL rearrangement, or FLT3-ITD mutation at diagnosis and non-remission group after the first induction chemotherapy possessed higher miR-196b expression. Furthermore, a positive relationship was found between the expression of miR-196b and SMC1A/MLH1 (Spear- man’s r=0.37 and 0.44, P=0.001 and <0.0001, respectively). Taken together, these findings suggest that differen- tially high expression of miR-196b in diagnostic marrow samples of pediatric AML is associated with unfavorable outcome, and miR-196b potentially can be a novel biomarker for the diagnosis, prognosis and treatment in pediatric AML

    Valence band offset of InN/BaTiO3 heterojunction measured by X-ray photoelectron spectroscopy

    Get PDF
    X-ray photoelectron spectroscopy has been used to measure the valence band offset of the InN/BaTiO(3 )heterojunction. It is found that a type-I band alignment forms at the interface. The valence band offset (VBO) and conduction band offset (CBO) are determined to be 2.25 ± 0.09 and 0.15 ± 0.09 eV, respectively. The experimental VBO data is well consistent with the value that comes from transitivity rule. The accurate determination of VBO and CBO is important for use of semiconductor/ferrroelectric heterojunction multifunctional devices

    A novel method of restoration path optimization for the AC-DC bulk power grid after a major blackout

    Full text link
    The restoration control of the modern alternating current-direct current (AC-DC) hybrid power grid after a major blackout is difficult and complex. Taking into account the interaction between the line-commutated converter high-voltage direct current (LCC-HVDC) and the AC power grid, this paper proposes a novel optimization method of restoration path to reconfigure the skeleton network for the blackout power grid. Based on the system strength, the supporting capability of the AC power grid for the LCC-HVDC is first analysed from the aspects of start-up and operation of LCC-HVDCs. Subsequently, the quantitative relationship between the restoration path and the restoration characteristic of LCC-HVDC is derived in detail based on the system strength indices of the short-circuit capacity and the frequency regulation capability. Then, an optimization model of restoration path considering non-tree paths is formulated and a feasible optimization algorithm is proposed to achieve the optimal path restoration scheme. A modified IEEE 39-bus system and a partial power grid of Southwest China are simulated to show that the proposed method is suitable for the restoration of AC-DC power grids and can improve restoration efficiency. This research can be an important guidance for operators to rapidly restore the AC-DC power grid.Comment: Accepted by IET Generation, Transmission & Distributio

    Advancing Medical Imaging with Language Models: A Journey from N-grams to ChatGPT

    Full text link
    In this paper, we aimed to provide a review and tutorial for researchers in the field of medical imaging using language models to improve their tasks at hand. We began by providing an overview of the history and concepts of language models, with a special focus on large language models. We then reviewed the current literature on how language models are being used to improve medical imaging, emphasizing different applications such as image captioning, report generation, report classification, finding extraction, visual question answering, interpretable diagnosis, and more for various modalities and organs. The ChatGPT was specially highlighted for researchers to explore more potential applications. We covered the potential benefits of accurate and efficient language models for medical imaging analysis, including improving clinical workflow efficiency, reducing diagnostic errors, and assisting healthcare professionals in providing timely and accurate diagnoses. Overall, our goal was to bridge the gap between language models and medical imaging and inspire new ideas and innovations in this exciting area of research. We hope that this review paper will serve as a useful resource for researchers in this field and encourage further exploration of the possibilities of language models in medical imaging

    Molecular insights into structural and dynamic properties of water molecules in calcium silicate hydrate nanopores: The roles of pore size and temperature

    Get PDF
    Calcium silicate hydrate is the primary hydration product of Portland cement and plays a crucial role in determining the strength of cement-based materials. The structural and dynamic properties of water molecules within calcium silicate hydrate nanopores have significant implications for the mechanical and durability performance of these materials. However, the influences of pore size and temperature on the properties of water molecules have not been fully explored. In this work, using molecular dynamics simulations and theoretical analysis, the evolution and mechanisms of the structural and dynamic properties of water molecules in different scenarios with various pore sizes and temperatures are systematically investigated. It is shown that the diffusion coefficients of water molecules increase with both pore size and temperature. Moreover, water molecules have a tendency to adsorb onto calcium silicate hydrate substrates, forming a distinct layered structure. As a result, the water molecules near the surfaces of calcium silicate hydrate substrates exhibit limited mobility, leading to smaller diffusion coefficients compared to those in other regions. Additionally, the distinctions in properties between water molecules and Ca2+ ions are elucidated and the underlying mechanisms behind these differences are also unveiled. The results and findings in this work deepen the understanding of structural and dynamic properties of water molecules within calcium silicate hydrate nanopores, providing valuable insights for improving the mechanical and durability performance of cement-based materials.Document Type: Original articleCited as: Liu, S., A, H., Tang, S., Kai, M., Yang, Z. Molecular insights into structural and dynamic properties of water molecules in Calcium silicate hydrate nanopores: The roles of pore size and temperature. Capillarity, 2023, 8(2): 23-33. https://doi.org/10.46690/capi.2023.08.0

    Methanol extract of Aruncus dioicus exerts antidiabetic effect via PCSK9/LDLR pathway

    Get PDF
    Purpose: To investigate the antidiabetic effect of methanol extract of Aruncus dioicus, and the underlying mechanism(s). Methods: Twenty-four adult female albino mice were randomly assigned to four groups of six mice each: normal control group, diabetic control group and two treatment groups. With the exception of normal control group, the diabetic control and treatment groups consisted of leptin receptor-deficient (db/db) type 2 diabetic mice. The diabetic control group was not treated, while the treatment groups received 200 or 400 mg/kg extract/day orally for 4 weeks. The effect of the extract on fasting blood glucose (FBG), proprotein convertase subtilisin/kexin type 9 (PCSK9), glycogen and lipid profiles were determined. The expressions of PCSK9, low-density lipoprotein receptor (LDL-R) and glucokinase (GCK) were determined in liver tissues using western blotting and real-time quantitative polymerase chain reaction (qRT-PCR). Results: Fasting blood glucose (FBG) was significantly and dose-dependently reduced in the treatment groups, relative to diabetic control group at different time-points (p &lt; 0.05). Total cholesterol (TC), triacylglycerol (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were significantly higher in the diabetic control group than in normal control group (p &lt; 0.05). However, treatment with methanol extract of A. dioicus significantly and dose-dependently reversed the changes in the levels of these parameters (p &lt; 0.05). The expressions of LDLR and GCK were significantly down-regulated in diabetic control group, when compared with normal control group, but their expressions were significantly dose-dependently upregulated in the treatment groups (p &lt; 0.05). Treatment with the extract significantly and dose-dependently down-regulated PCSK9 expression (p &lt; 0.05). Liver injury characterized by large distended lipid droplets and fat accumulation was seen in diabetic mice, but treatment with methanol extract of A. dioicus significantly reversed the histopathological changes induced by DM. Conclusion: These results indicate that the antidiabetic effect of methanol extract of A. dioicus is exerted via a mechanism involving PCSK9/LDLR pathway

    Overexpression of lncRNA-MEG3 inhibits endometrial cell proliferation and invasion via miR-21–5p/DNMT3B/Twist

    Get PDF
    Recent studies have found that lncRNA-MEG3(MEG3) plays an important role in the development of EMs (Endometriosis), but the specific mechanism needs to be further explored. This study aimed to investigate the effect of MEG3 on the proliferation, invasion of EMs cells. The authors used RT-qPCR to detect the expression of MEG3 and miR-21–5p in EMs tissues and hESCs cells, MTT and Transwell to detect cell proliferation and invasion, western blotting assay to detect the expression of DNMT3B and Twist, MSP to detect the methylation of Twist. The present study's detection results showed that MEG3 was lowly expressed in EMs tissues and hESCs cells, and overexpression of MEG3 could down-regulate miR-21–5p and inhibit endometrial cell proliferation and invasion. In addition, overexpression of MEG3 upregulated the expression of DNMT3B and promoted the methylation of TWIST. In conclusion, the present findings suggest that MEG3 is downregulated in EMs tissues, and overexpression of MEG3 can promote the activity of DNA methyltransferase DNMT3B by downregulating miR-21–5p, thereby promoting the methylation of Twist, downregulating Twist level to inhibits hESCs cells proliferation and invasion
    corecore