56 research outputs found

    Contextual-Bandit Based Personalized Recommendation with Time-Varying User Interests

    Full text link
    A contextual bandit problem is studied in a highly non-stationary environment, which is ubiquitous in various recommender systems due to the time-varying interests of users. Two models with disjoint and hybrid payoffs are considered to characterize the phenomenon that users' preferences towards different items vary differently over time. In the disjoint payoff model, the reward of playing an arm is determined by an arm-specific preference vector, which is piecewise-stationary with asynchronous and distinct changes across different arms. An efficient learning algorithm that is adaptive to abrupt reward changes is proposed and theoretical regret analysis is provided to show that a sublinear scaling of regret in the time length TT is achieved. The algorithm is further extended to a more general setting with hybrid payoffs where the reward of playing an arm is determined by both an arm-specific preference vector and a joint coefficient vector shared by all arms. Empirical experiments are conducted on real-world datasets to verify the advantages of the proposed learning algorithms against baseline ones in both settings.Comment: Accepted by AAAI 2

    Analysis of the Electrical and Thermal Properties for Magnetic Fe3O4-Coated SiC-Filled Epoxy Composites.

    Get PDF
    Orderly arranged Silicon carbide (SiC)/epoxy (EP) composites were fabricated. SiC was made magnetically responsive by decorating the surface with iron oxide (Fe3O4) nanoparticles. Three treatment methods, including without magnetization, pre-magnetization and curing magnetization, were used to prepare SiC/EP composites with different filler distributions. Compared with unmodified SiC, magnetic SiC with core-shell structure was conducive to improve the breakdown strength of SiC/EP composites and the maximum enhancement rate was 20.86%. Among the three treatment methods, SiC/EP composites prepared in the curing-magnetization case had better comprehensive properties. Under the action of magnetic field, magnetic SiC were orderly oriented along the direction of an external field, thereby forming SiC chains. The magnetic alignment of SiC restricted the movement of EP macromolecules or polar groups to some extent, resulting in the decrease in the dielectric constant and dielectric loss. The SiC chains are equivalent to heat flow channels, which can improve the heat transfer efficiency, and the maximum improvement rate was 23.6%. The results prove that the orderly arrangement of SiC had a favorable effect on dielectric properties and thermal conductivity of SiC/EP composites. For future applications, the orderly arranged SiC/EP composites have potential for fabricating insulation materials in the power electronic device packaging field

    HSFA1a modulates plant heat stress responses and alters the 3D chromatin organization of enhancer-promoter interactions

    Get PDF
    The complex and dynamic three-dimensional organization of chromatin within the nucleus makes understanding the control of gene expression challenging, but also opens up possible ways to epigenetically modulate gene expression. Because plants are sessile, they evolved sophisticated ways to rapidly modulate gene expression in response to environmental stress, that are thought to be coordinated by changes in chromatin conformation to mediate specific cellular and physiological responses. However, to what extent and how stress induces dynamic changes in chromatin reorganization remains poorly understood. Here, we comprehensively investigated genome-wide chromatin changes associated with transcriptional reprogramming response to heat stress in tomato. Our data show that heat stress induces rapid changes in chromatin architecture, leading to the transient formation of promoter-enhancer contacts, likely driving the expression of heat-stress responsive genes. Furthermore, we demonstrate that chromatin spatial reorganization requires HSFA1a, a transcription factor (TF) essential for heat stress tolerance in tomato. In light of our findings, we propose that TFs play a key role in controlling dynamic transcriptional responses through 3D reconfiguration of promoter-enhancer contacts

    Anchoring Water Soluble Phosphotungstic Acid by Hybrid Fillers to Construct Three-Dimensional Proton Transport Networks

    No full text
    Phosphotungstic acid (HPW)-filled composite proton exchange membranes possess high proton conductivity under low relative humidity (RH). However, the leaching of HPW limits their wide application. Herein, we propose a novel approach for anchoring water soluble phosphotungstic acid (HPW) by polydopamine (PDA) coated graphene oxide and halloysite nanotubes (DGO and DHNTs) in order to construct hybrid three-dimensional proton transport networks in a sulfonated poly(ether ether ketone) (SPEEK) membrane. The introduction of PDA on the surfaces of the hybrid fillers could provide hydroxyl groups and secondary amine groups to anchor HPW, resulting in the uniform dispersion of HPW in the SPEEK matrix. The SPEEK/DGO/DHNTs/HPW (90/5/5/60) composite membrane exhibited higher water uptake and much better conductivity than the SPEEK membrane at low relative humidity. The best conductivity reached wass 0.062 S cm−1 for the composite membrane, which is quite stable during the water immersion test

    Improved Dielectric Breakdown Strength of Polyimide by Incorporating Polydopamine-Coated Graphitic Carbon Nitride

    No full text
    Breakdown strength is an important parameter for polymer dielectric, and introducing inorganic filler into the polymer matrix is an efficient method to improve the breakdown strength. In this work, graphitic carbon nitride nanosheets (CNNS) were ultrasonically exfoliated and coated with polydopamine to obtain modified nanosheets (DCNNS), and then polyimide (PI) composite films with various CNNS and DCNNS were prepared and compared. Owing to the abundant hydroxyl groups of polydopamine, good filler-polymer compatibility and uniform filler dispersion were achieved for PI/DCNNS composites. Both breakdown strength and dielectric constant were improved with the addition of either CNNS or DCNNS. However, at the same filler content, the PI/DCNNS composites exhibited higher breakdown strength and dielectric constant than the PI/CNNS. The PI composite with 0.5 wt% DCNNS showed the highest breakdown strength of ~300 kV/mm, increased by 67.6% as compared to the pure PI, while the PI/CNNS composite with the same filler content only increased by 14.5%

    A novel method to prepare acrylonitrile-butadiene rubber/clay nanocomposites by compounding with clay gel

    No full text
    Despite that there have been many reports on the achievement of high-performance rubber/clay nanocomposites, the preparation strategies of these nanocomposites are still quite limited. In this study, a novel method named gel compounding method was utilized to prepare acrylonitrile-butadiene rubber (NBR)/clay nanocomposites via compounding solid rubber with clay gels. As illustrated by TEM and XRD, clay was uniformly dispersed in the NBR matrix as either exfoliated platelets or very thin layered silicate stacks, indicating the separated structure was formed in the NBR/clay nanocomposite prepared by this gel compounding method. Mechanical properties were significantly improved for the NBR/clay nanocomposites, which reached the tensile strength of 12.1 MPa with 10 phr clay, more than 250% higher than that of pure NBR.</p

    Effect of silane coupling agent on the structure and mechanical properties of nano-dispersed clay filled styrene butadiene rubber

    No full text
    In rubber nanocomposites containing inorganic clay, the reinforcement effect has always been relatively insignificant due to the poor interfacial interaction between the rubber matrix and clay fillers. In this work, the silane coupling agent bis[3-(triethoxysilyl)propyl]tetrasulfide (Si-69) was employed through mechanically blending with styrene butadiene rubber (SBR)/clay (100/30) nanocompound that was prepared by combined latex compounding and spray-drying technique, to serve as the molecular bridge between SBR matrix and clay filler and strengthen the interfacial interaction. TEM and XRD characterization indicated that Si-69 significantly improved the dispersion of the silicate layers in the SBR matrix. The RPA analysis and the mechanical property study of the SBR/clay nanocomposites revealed that the filler network interaction was weakened while the filler-rubber interaction was strengthened upon the addition of Si-69. POLYM. COMPOS., 37:890-896, 2016. (c) 2014 Society of Plastics Engineers</p

    Effect of Fluorosilicone Rubber on Mechanical Properties, Dielectric Breakdown Strength and Hydrophobicity of Methyl Vinyl Silicone Rubber

    No full text
    Silicone rubber (SIR) is used in high-voltage insulators because of its insulation, and excellent hydrophobicity is very important in harsh outdoor environments. To enhance the hydrophobicity and low-temperature resistance of silicone rubber, methyl vinyl silicone rubber and fluorosilicone rubber (FSIR) blend composites with different ratios were prepared. The samples were characterized and analyzed using scanning electron microscopy, tensile testing, dynamic mechanical analysis and static contact angle testing. The results showed that after blending, SIR and FSIR were well compatible. FSIR had higher elastic modulus and reduced the tensile strength to some extent in SIR/FSIR composites. The addition of a small amount of FSIR made its crystallization temperature decrease from −30 to −45 °C, meaning that the low-temperature resistance was significantly improved. The breakdown strength of SIR/FSIR composites can still be maintained at a high level when a small amount of FSIR is added. The contact angle of the composites increased from 108.9 to 115.8° with the increase in FSIR content, indicating the enhanced hydrophobicity. When the samples were immersed in water for 96 h, the hydrophobicity migration phenomenon occurred. The static contact angle of the samples with less FSIR content had a weaker decreasing trend, which illustrated that the hydrophobicity was maintained at a high level

    Enhanced Proton Conductivity in Sulfonated Poly(ether ether ketone) Membranes by Incorporating Sodium Dodecyl Benzene Sulfonate

    No full text
    It is of great importance to improve the proton conductivity of proton exchange membranes by easy-handling and cost-efficient approaches. In this work, we incorporated a commercially obtained surfactant, sodium dodecyl benzene sulfonate (SDBS), into sulfonated poly(ether ether ketone) (SPEEK) through solution casting to prepare SPEEK/SDBS membranes. When no more than 10 wt % SDBS was added, the SDBS was well dissolved into the SPEEK matrix, and the activation energy for the proton transfer in the SPEEK/SDBS membranes was greatly reduced, leading to significant enhancement of the membrane proton conductivity. Compared with the SPEEK control membrane, the SPEEK/SDBS membrane with 10 wt % SDBS showed a 78% increase in proton conductivity, up from 0.051 S cm&minus;1 to 0.091 S cm&minus;1, while the water uptake increased from 38% to 62%. Moreover, the SPEEK/SDBS membrane exhibited constant proton conductivity under a long-term water immersion test
    • …
    corecore