47 research outputs found
Dynamic Distribution Pruning for Efficient Network Architecture Search
Network architectures obtained by Neural Architecture Search (NAS) have shown
state-of-the-art performance in various computer vision tasks. Despite the
exciting progress, the computational complexity of the forward-backward
propagation and the search process makes it difficult to apply NAS in practice.
In particular, most previous methods require thousands of GPU days for the
search process to converge. In this paper, we propose a dynamic distribution
pruning method towards extremely efficient NAS, which samples architectures
from a joint categorical distribution. The search space is dynamically pruned
every a few epochs to update this distribution, and the optimal neural
architecture is obtained when there is only one structure remained. We conduct
experiments on two widely-used datasets in NAS. On CIFAR-10, the optimal
structure obtained by our method achieves the state-of-the-art \% test
error, while the search process is more than times faster (only
GPU hours on a Tesla V100) than the state-of-the-art NAS algorithms. On
ImageNet, our model achieves 75.2\% top-1 accuracy under the MobileNet
settings, with a time cost of only GPU days that is acceleration
over the fastest NAS algorithm. The code is available at \url{
https://github.com/tanglang96/DDPNAS
MAPK SIGNAL PATHWAY INVOLVED IN ANTI-INFLAMMATORY EFFECT OF CHAIHU-SHUGAN-SAN AND SHEN-LING-BAI-ZHU-SAN ON HEPATOCYTE IN NON-ALCOHOLIC STEATOHEPATITIS RATS
Traditional Chinese medicine (TCM) has a thousands-of-years long history of use. Chaihu-Shugan-San (CSS) and Shen-ling-bai-zhu-San (SLBZS) are famous traditional Chinese herbal medicine formulas, which has been used in China for the treatment of many chronic diseases. This study investigated the anti-inflammatory effects of CSS and SLBZS on signaling molecules involved in p38 mitogen-activated protein kinase (p38 MAPK) pathway on hepatocytes of non-alcoholic steatohepatitis (NASH) rats induced by high fat diet. SD male rats were randomly divided into 8 groups: negative control group, model control group, high(9.6 g/kg/day)/low(3.2 g/kg/day)-dose CSS group, high(30 g/kg/day)/low(10 g/kg/day)-dose SLBZS group, high(39.6 g/kg/day)/low(13.2g/kg/day)-dose integrated group. The rats of NASH model were induced by feeding a high-fat diet. After 16 weeks, Hepatocytes were isolated from 6 rats in each group by collagenase perfusion. The liver histopathological changes and serum inflammatory cytokines TNF-α, IL-6 were determined. The proteins of TLR4, phosphor-p38 MAPK and p38 MAPK involved in p38 MAPK signal pathway were assayed. The statistical data indicated the NASH model rats reproduced typical histopathological features of NASH in human. CSS and SLBZS ameliorated lipid metabolic disturbance, attenuated NASH progression, decreased the levels of TNF-α and IL-6 in serum, as well as inhibited TLR4 protein expression, p38 MAPK phosphorylation, and activation of p38 MAPK. In conclusion, CSS and SLBZS might work as a significant anti-inflammatory effect on hepatocyte of NASH by inhibiting the activation of TLR4, p-p38 MAPK and p38 MAPK involved in p38 MAPK signal pathway. To some extent, CSS and SLBZS may be a potentially alternative and complementary medicine to protect against liver injury, alleviate the inflammation reaction, moderate NASH progression
Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial
Background: Previous cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes.
Methods: We conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment.
Results: Forty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference − 0.40 [95% CI − 0.71 to − 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference − 1.6% [95% CI − 4.3% to 1.2%]; P = 0.42) between groups.
Conclusions: In this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness. Trial registration: ISRCTN, ISRCTN12233792. Registered November 20th, 2017
Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial.
BackgroundPrevious cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes.MethodsWe conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment.ResultsForty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference - 0.40 [95% CI - 0.71 to - 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference - 1.6% [95% CI - 4.3% to 1.2%]; P = 0.42) between groups.ConclusionsIn this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness.Trial registrationISRCTN, ISRCTN12233792 . Registered November 20th, 2017
Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial (vol 26, 46, 2022)
BackgroundPrevious cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes.MethodsWe conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment.ResultsForty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference - 0.40 [95% CI - 0.71 to - 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference - 1.6% [95% CI - 4.3% to 1.2%]; P = 0.42) between groups.ConclusionsIn this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness.Trial registrationISRCTN, ISRCTN12233792 . Registered November 20th, 2017