18,099 research outputs found

    Residual Symmetries for Neutrino Mixing with a Large theta_13 and Nearly Maximal delta_D

    Full text link
    The residual Z^s_2(k) and bar Z^s_2(k) symmetries induce a direct and unique phenomenological relation with theta_x (= theta_13) expressed in terms of the other two mixing angles, theta_s (= theta_12) and theta_a (= theta_23), and the Dirac CP phase delta_D. Z^s_2(k) predicts a theta_x probability distribution centered around 3^o ~ 6^o with an uncertainty of 2^o to 4^o while those from bar Z^s_2(k) are approximately a factor of two larger. Either result fits the T2K, MINOS and Double CHOOZ measurements. Alternately a prediction for the Dirac CP phase delta_D results in a peak at +-74^o (+-106^o) for Z^s_2(k) or +-123^o (+-57^o) for bar Z^s_2(k) which is consistent with the latest global fit. We also give a distribution for the leptonic Jarslkog invariant J_v which can provide further tests from measurements at T2K and NOvA.Comment: Accepted for publication in PR

    Bringing closure to microlensing mass measurement

    Get PDF
    Interferometers offer multiple methods for studying microlensing events and determining the properties of the lenses. We investigate the study of microlensing events with optical interferometers, focusing on narrow-angle astrometry, visibility, and closure phase. After introducing the basics of microlensing and interferometry, we derive expressions for the signals in each of these three channels. For various forecasts of the instrumental performance, we discuss which method provides the best means of measuring the lens angular Einstein radius theta_E, a prerequisite for determining the lens mass. If the upcoming generation of large-aperture, AO-corrected long baseline interferometers (e.g. VLTI, Keck, OHANA) perform as well as expected, theta_E may be determined with signal-to-noise greater than 10 for all bright events. We estimate that roughly a dozen events per year will be sufficiciently bright and have long enough durations to allow the measurement of the lens mass and distance from the ground. We also consider the prospects for a VLTI survey of all bright lensing events using a Fisher matrix analysis, and find that even without individual masses, interesting constraints may be placed on the bulge mass function, although large numbers of events would be required.Comment: 23 pages, aastex, submitted to Ap

    A New Kind of Graded Lie Algebra and Parastatistical Supersymmetry

    Full text link
    In this paper the usual Z2Z_2 graded Lie algebra is generalized to a new form, which may be called Z2,2Z_{2,2} graded Lie algebra. It is shown that there exists close connections between the Z2,2Z_{2,2} graded Lie algebra and parastatistics, so the Z2,2Z_{2,2} can be used to study and analyse various symmetries and supersymmetries of the paraparticle systems

    Tele-autonomous control involving contacts: The applications of a high precision laser line range sensor

    Get PDF
    The object localization algorithm based on line-segment matching is presented. The method is very simple and computationally fast. In most cases, closed-form formulas are used to derive the solution. The method is also quite flexible, because only few surfaces (one or two) need to be accessed (sensed) to gather necessary range data. For example, if the line-segments are extracted from boundaries of a planar surface, only parameters of one surface and two of its boundaries need to be extracted, as compared with traditional point-surface matching or line-surface matching algorithms which need to access at least three surfaces in order to locate a planar object. Therefore, this method is especially suitable for applications when an object is surrounded by many other work pieces and most of the object is very difficult, is not impossible, to be measured; or when not all parts of the object can be reached. The theoretical ground on how to use line range sensor to located an object was laid. Much work has to be done in order to be really useful

    Numerical Study on Indoor Wideband Channel Characteristics with Different Internal Wall

    Get PDF
    Effects of material and configuration of the internal wall on the performance of wideband channel are investigated by using the Finite Difference Time-Domain (FDTD) method. The indoor wideband channel characteristics, such as the path-loss, Root-Mean-Square (RMS) delay spread and number of the multipath components (MPCs), are presented. The simulated results demonstrate that the path-loss and MPCs are affected by the permittivity, dielectric loss tangent and thickness of the internal wall, while the RMS delay spread is almost not relevant with the dielectric permittivity. Furthermore, the comparison of simulated result with the measured one in a simple scenario has validated the simulation study

    The Palomar Testbed Interferometer

    Get PDF
    The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in July 1995. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40-cm apertures can be combined pair-wise to provide baselines to 110 m. The interferometer actively tracks the white-light fringe using an array detector at 2.2 um and active delay lines with a range of +/- 38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.Comment: ApJ in Press (Jan 99) Fig 1 available from http://huey.jpl.nasa.gov/~bode/ptiPicture.html, revised duging copy edi

    Evolution equation of entanglement for general bipartite systems

    Full text link
    We explore how entanglement of a general bipartite system evolves when one subsystem undergoes the action of an arbitrary noisy channel. It is found that the dynamics of entanglement for general bipartite systems under the influence of such channel is determined by the channel's action on the maximally entangled state, which includes as a special case the results for two-qubit systems [Nature Physics 4, 99 (2008)]. In particular, for multi-qubit or qubit-qudit systems, we get a general factorization law for evolution equation of entanglement with one qubit being subject to a noisy channel. Our results can help the experimental characterization of entanglement dynamics.Comment: 4 pages, 1 figur
    corecore