75 research outputs found

    NFIA Haploinsufficiency Is Associated with a CNS Malformation Syndrome and Urinary Tract Defects

    Get PDF
    Complex central nervous system (CNS) malformations frequently coexist with other developmental abnormalities, but whether the associated defects share a common genetic basis is often unclear. We describe five individuals who share phenotypically related CNS malformations and in some cases urinary tract defects, and also haploinsufficiency for the NFIA transcription factor gene due to chromosomal translocation or deletion. Two individuals have balanced translocations that disrupt NFIA. A third individual and two half-siblings in an unrelated family have interstitial microdeletions that include NFIA. All five individuals exhibit similar CNS malformations consisting of a thin, hypoplastic, or absent corpus callosum, and hydrocephalus or ventriculomegaly. The majority of these individuals also exhibit Chiari type I malformation, tethered spinal cord, and urinary tract defects that include vesicoureteral reflux. Other genes are also broken or deleted in all five individuals, and may contribute to the phenotype. However, the only common genetic defect is NFIA haploinsufficiency. In addition, previous analyses of Nfia−/− knockout mice indicate that Nfia deficiency also results in hydrocephalus and agenesis of the corpus callosum. Further investigation of the mouse Nfia+/− and Nfia−/− phenotypes now reveals that, at reduced penetrance, Nfia is also required in a dosage-sensitive manner for ureteral and renal development. Nfia is expressed in the developing ureter and metanephric mesenchyme, and Nfia+/− and Nfia−/− mice exhibit abnormalities of the ureteropelvic and ureterovesical junctions, as well as bifid and megaureter. Collectively, the mouse Nfia mutant phenotype and the common features among these five human cases indicate that NFIA haploinsufficiency contributes to a novel human CNS malformation syndrome that can also include ureteral and renal defects

    Review of genetic factors in intestinal malrotation

    Get PDF
    Intestinal malrotation is well covered in the surgical literature from the point of view of operative management, but few reviews to date have attempted to provide a comprehensive examination of the topic from the point of view of aetiology, in particular genetic aetiology. Following a brief overview of molecular embryology of midgut rotation, we present in this article instances of and case reports and case series of intestinal malrotation in which a genetic aetiology is likely. Autosomal dominant, autosomal recessive, X-linked and chromosomal forms of the disorder are represented. Most occur in syndromic form, that is to say, in association with other malformations. In many instances, recognition of a specific syndrome is possible, one of several examples discussed being the recently described association of intestinal malrotation with alveolar capillary dysplasia, due to mutations in the forkhead box transcription factor FOXF1. New advances in sequencing technology mean that the identification of the genes mutated in these disorders is more accessible than ever, and paediatric surgeons are encouraged to refer to their colleagues in clinical genetics where a genetic aetiology seems likely

    The Exstrophy-epispadias complex

    Get PDF
    Exstrophy-epispadias complex (EEC) represents a spectrum of genitourinary malformations ranging in severity from epispadias (E) to classical bladder exstrophy (CEB) and exstrophy of the cloaca (EC). Depending on severity, EEC may involve the urinary system, musculoskeletal system, pelvis, pelvic floor, abdominal wall, genitalia, and sometimes the spine and anus. Prevalence at birth for the whole spectrum is reported at 1/10,000, ranging from 1/30,000 for CEB to 1/200,000 for EC, with an overall greater proportion of affected males. EEC is characterized by a visible defect of the lower abdominal wall, either with an evaginated bladder plate (CEB), or with an open urethral plate in males or a cleft in females (E). In CE, two exstrophied hemibladders, as well as omphalocele, an imperforate anus and spinal defects, can be seen after birth. EEC results from mechanical disruption or enlargement of the cloacal membrane; the timing of the rupture determines the severity of the malformation. The underlying cause remains unknown: both genetic and environmental factors are likely to play a role in the etiology of EEC. Diagnosis at birth is made on the basis of the clinical presentation but EEC may be detected prenatally by ultrasound from repeated non-visualization of a normally filled fetal bladder. Counseling should be provided to parents but, due to a favorable outcome, termination of the pregnancy is no longer recommended. Management is primarily surgical, with the main aims of obtaining secure abdominal wall closure, achieving urinary continence with preservation of renal function, and, finally, adequate cosmetic and functional genital reconstruction. Several methods for bladder reconstruction with creation of an outlet resistance during the newborn period are favored worldwide. Removal of the bladder template with complete urinary diversion to a rectal reservoir can be an alternative. After reconstructive surgery of the bladder, continence rates of about 80% are expected during childhood. Additional surgery might be needed to optimize bladder storage and emptying function. In cases of final reconstruction failure, urinary diversion should be undertaken. In puberty, genital and reproductive function are important issues. Psychosocial and psychosexual outcome depend on long-term multidisciplinary care to facilitate an adequate quality of life

    MELAS point mutation with unusual clinical presentation

    No full text
    Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) is a multisystemic mitochondrial disorder (Pavlakis et al. Advances in Contemporary Neurology. Philadelphia: Davis, 1988: 95-133) and most patients with the typical MELAS phenotype have a point mutation in mitochondrial DNA, an A to G transition at nucleotide 3243 (Goto et al. Nature 1990; 348: 651-653; Koboyashi et al. Biochem Biophys Res Commun 1990; 173: 816-822; Ciafaloni et al. Ann Neurol 1992; 31: 391-398). A 9-yr-old boy presenting with chronic asthma and depression was found to have abnormal mitochondria, partial defects of respiratory chain enzymes, and the MELAS point mutation. \ua9 1993

    Molecular genetic study of myophosphorylase deficiency (McArdle's disease) in two Yemenite-Jewish families

    No full text
    Using direct sequencing and restriction fragment length polymorphism analysis, we identified two novel mutations in two unrelated Yemenite-Jewish families with typical symptoms of McArdle's disease. In one family, both father and daughter were affected, an example of pseudo-dominant transmission. The daughter was a compound heterozygote for a new nonsense mutation (R207X) and a new missense mutation (R602Q) while her father was homozygous for the R207X mutation. The mother carried only the R602Q mutation and was an asymptomatic heterozygote. In the second family, the only affected member was homozygous for the R207X mutation. This first molecular genetic study of McArdle's disease in Yemenite-Jewish patients expands the already remarkable genetic heterogeneity of McArdle's disease and suggests the existence of ethnic or private mutations within this group. (C) 2002 Elsevier Science B.V. All rights reserved

    AT-Rich Palindromes Mediate the Constitutional t(11;22) Translocation

    Get PDF
    The constitutional t(11;22) translocation is the only known recurrent non-Robertsonian translocation in humans. Offspring are susceptible to der(22) syndrome, a severe congenital anomaly disorder caused by 3:1 meiotic nondisjunction events. We previously localized the t(11;22) translocation breakpoint to a region on 22q11 within a low-copy repeat termed “LCR22” and within an AT-rich repeat on 11q23. The LCR22s are implicated in mediating different rearrangements on 22q11, leading to velocardiofacial syndrome/DiGeorge syndrome and cat-eye syndrome by homologous recombination mechanisms. The LCR22s contain AT-rich repetitive sequences, suggesting that such repeats may mediate the t(11;22) translocation. To determine the molecular basis of the translocation, we cloned and sequenced the t(11;22) breakpoint in the derivative 11 and 22 chromosomes in 13 unrelated carriers, including two de novo cases and der(22) syndrome offspring. We found that, in all cases examined, the reciprocal exchange occurred between similar AT-rich repeats on both chromosomes 11q23 and 22q11. To understand the mechanism, we examined the sequence of the breakpoint intervals in the derivative chromosomes and compared this with the deduced normal chromosomal sequence. A palindromic AT-rich sequence with a near-perfect hairpin could form, by intrastrand base-pairing, on the parental chromosomes. The sequence of the breakpoint junction in both derivatives indicates that the exchange events occurred at the center of symmetry of the palindromes, and this resulted in small, overlapping staggered deletions in this region among the different carriers. On the basis of previous studies performed in diverse organisms, we hypothesize that double-strand breaks may occur in the center of the palindrome, the tip of the putative hairpin, leading to illegitimate recombination events between similar AT-rich sequences on chromosomes 11 and 22, resulting in deletions and loss of the palindrome, which then could stabilize the DNA structure

    Lack of paternal inheritance of muscle mitochondrial DNA in sporadic mitochondrial myopathies

    No full text
    In 2002, paternal inheritance of muscle mitochondrial DNA (mtDNA) was reported in a patient with exercise intolerance and a mitochondrial DNA (mtDNA) mutation restricted to skeletal muscle. To evaluate whether paternal inheritance is a common phenomenon, we studied 10 sporadic patients with skeletal muscle-restricted mtDNA mutations: five harbored mtDNA point mutations in protein-coding genes and five had single mtDNA deletions. We performed haplotype analysis and direct sequencing of the hypervariable regions 1 and 2 of the D-loop in muscle and blood from the patients and, when available, in blood from their parents. We did not observe paternal inheritance in any of our patients

    Der(22) syndrome and velo-cardio-facial syndrome/DiGeorge syndrome share a 1.5-Mb region of overlap on chromosome 22q11.

    No full text
    Derivative 22 (der[22]) syndrome is a rare disorder associated with multiple congenital anomalies, including profound mental retardation, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional t(11;22)(q23;q11) translocation, owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. The trisomic region on chromosome 22 overlaps the region hemizygously deleted in another congenital anomaly disorder, velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). Most patients with VCFS/DGS have a similar 3-Mb deletion, whereas some have a nested distal deletion endpoint resulting in a 1.5-Mb deletion, and a few rare patients have unique deletions. To define the interval on 22q11 containing the t(11;22) breakpoint, haplotype analysis and FISH mapping were performed for five patients with der(22) syndrome. Analysis of all the patients was consistent with 3:1 meiotic malsegregation in the t(11;22) carrier parent. FISH-mapping studies showed that the t(11;22) breakpoint occurred in the same interval as the 1.5-Mb distal deletion breakpoint for VCFS. The deletion breakpoint of one VCFS patient with an unbalanced t(18;22) translocation also occurred in the same region. Hamster-human somatic hybrid cell lines from a patient with der(22) syndrome and a patient with VCFS showed that the breakpoints occurred in an interval containing low-copy repeats, distal to RANBP1 and proximal to ZNF74. The presence of low-copy repetitive sequences may confer susceptibility to chromosome rearrangements. A 1.5-Mb region of overlap on 22q11 in both syndromes suggests the presence of dosage-dependent genes in this interval

    Molecular characterization of myophosphorylase deficiency in a group of patients from northern Italy

    No full text
    We studied a group of 14 patients from Northern Italy with myophosphorylase deficiency. The disease presented considerable clinical and biochemical heterogeneity, which was reflected at the molecular level. The clinical presentation was typical in 3 patients, mild in 7 (exercise intolerance), and severe in 4 (fixed weakness). Enzyme activity was undetectable in 10 patients, below 3% of control in 3, and 13% of control in one. Enzymatic protein was detectable immunologically only in 1 patient. Myophosphorylase mRNA was present in 8 patients, but in 7 of them it was reduced in amount. Two patients were homozygous for the common nonsense R49X mutation, 5 were heterozygous. Two missense mutations not previously observed were identified in this group of patients. The frequency of alleles with the R49X mutation was significantly lower in this group of patients than in previously reported series. Myophosphorylase deficiency is genetically heterogeneous even among patients living in a small region and with a common ethnic background
    • 

    corecore