19 research outputs found

    Modeling the Biogeochemical Cycle of Selenium in the San Francisco Bay

    Get PDF
    Due to recent concerns about selenium toxicity in the San Francisco Bay and the roles of refinery and San Joaquin River inputs on the selenium cycle, the model ECoS 3 (distributed from Plymouth Marine Laboratory, United Kingdom) was modified to simulate the biogeochemical cycle of selenium in the Northern Reach. The model is designed to simulate salinity, total suspended material, phytoplankton concentrations, dissolved selenium and its speciation (selenite, selenate, and organic selenide), and particulate selenium and its speciation (selenite + selenate, elemental selenium, and organic selenide). Actual data from 1999 were used to calibrate the model, while data from other sampling periods (1986–1988 and 1997–1998) were then compared to model simulations to verify its accuracy. The sensitivity of the model to specific inputs of selenium was also determined. These results indicate that dissolved selenium is largely controlled by riverine and refinery inputs, while particulate selenium is a function of phytoplankton productivity and riverine inputs of sediment. Forecasting simulations included increasing the San Joaquin River discharge to the Delta and varying refinery discharges to the Bay. These simulation results indicate that total particulate selenium concentrations may increase in the entire Bay to 1 μg g−1 if the San Joaquin Flow is increased. This concentration is twice as high as the current estuarine average particulate selenium and at the level where the concentration of selenium in Potomocorbula amurensis becomes problematic for estuarine predators. Furthermore, simulations suggest that doubling the current refinery loads as selenate have little effect on the particle-associated selenium in the estuary. Simulated data from the model can be used in other models to predict selenium concentrations in higher trophic levels. Furthermore the model can be used as a template to study the biogeochemical cycle of other elements in well-mixed estuaries, and in restoration projects, pollution control and other trophic transfer scenarios

    Evaluating the Biogeochemical Cycle of Selenium in San Francisco Bay Through Modeling

    Get PDF
    A biogeochemical model was developed to simulate salinity, total suspended material, phytoplankton biomass, dissolved selenium concentrations (selenite, selenate, and organic selenide), and particulate selenium concentrations (selenite + selenate, elemental selenium, and organic selenide) in the San Francisco Bay estuary. Model-generated estuarine profiles of total dissolved selenium reproduced observed estuarine profiles at a confidence interval of 91- 99% for 8 different years under various environmental conditions. The model accurately reproduced the observed dissolved speciation at confidence intervals of 81-98% for selenite, 72-91% for selenate, and 60-96% for organic selenide. For particulate selenium, model-simulated estuarine profiles duplicated the observed behavior of total particulate selenium (76-93%), elemental selenium (80-97%), selenite + selenate (77-82%), and organic selenide (70-83%). Discrepancies between model simulations and the observed data provided insights into the estuarine biogeochemical cycle of selenium that were largely unknown (e.g., adsorption/desorption). Forecasting simulations investigated how an increase in the discharge from the San Joaquin River and varying refinery inputs affect total dissolved and particulate selenium within the estuary. These model runs indicate that during high river flows the refinery signal is undetectable, but when river flow is low (70- day residence time) total particle-associated selenium concentrations can increase to \u3e2 µg g-1 . Increasing the San Joaquin River discharge could also increase the total particle-associated selenium concentrations to \u3e1 µg g-1 . For both forecasting simulations, particle-associated selenium was predicted to be higher than current conditions and reached levels where selenium could accumulate in the estuarine food web

    Effects of CO\u3csub\u3e2\u3c/sub\u3e on Growth Rate, C:N:P, and Fatty Acid Composition of Seven Marine Phytoplankton Species

    Get PDF
    Carbon dioxide (CO2) is the primary substrate for photosynthesis by the phytoplankton that form the base of the marine food web and mediate biogeochemical cycling of C and nutrient elements. Specific growth rate and elemental composition (C:N:P) were characterized for 7 cosmopolitan coastal and oceanic phytoplankton species (5 diatoms and 2 chlorophytes) using low density, nutrient-replete, semi-continuous culture experiments in which CO2 was manipulated to 4 levels ranging from post-bloom/glacial maxima (ppm) to geological maxima levels (\u3e2900 ppm). Specific growth rates at high CO2 were from 19 to 60% higher than in low CO2 treatments in 4 species and 44% lower in 1 species; there was no significant change in 2 species. Higher CO2 availability also resulted in elevated C:P and N:P molar ratios in Thalassiosira pseudonana (~60 to 90% higher), lower C:P and N:P molar ratios in 3 species (~20 to 50% lower), and no change in 3 species. Carbonate system-driven changes in growth rate did not necessarily result in changes in elemental composition, or vice versa. In a subset of 4 species for which fatty acid composition was examined, elevated CO2 did not affect the contribution of polyunsaturated fatty acids to total fatty acids significantly. These species show relatively little sensitivity between present day CO2 and predicted ocean acidification scenarios (year 2100). The results, however, demonstrate that CO2 availability at environmentally and geologically relevant scales can result in large changes in phytoplankton physiology, with potentially large feedbacks to ocean biogeochemical cycles and ecosystem structure

    Recommended Priorities for Research on Ecological Impacts of Ocean and Coastal Acidification in the U.S. Mid-Atlantic

    Get PDF
    The estuaries and continental shelf system of the United States Mid-Atlantic are subject to ocean acidification driven by atmospheric CO2, and coastal acidification caused by nearshore and land-sea interactions that include biological, chemical, and physical processes. These processes include freshwater and nutrient input from rivers and groundwater; tidally-driven outwelling of nutrients, inorganic carbon, alkalinity; high productivity and respiration; and hypoxia. Hence, these complex dynamic systems exhibit substantial daily, seasonal, and interannual variability that is not well captured by current acidification research on Mid-Atlantic organisms and ecosystems. We present recommendations for research priorities that target better understanding of the ecological impacts of acidification in the U. S. Mid-Atlantic region. Suggested priorities are: 1) Determining the impact of multiple stressors on our resource species as well as the magnitude of acidification; 2) Filling information gaps on major taxa and regionally important species in different life stages to improve understanding of their response to variable temporal scales and sources of acidification; 3) Improving experimental approaches to incorporate realistic environmental variability and gradients, include interactions with other environmental stressors, increase transferability to other systems or organisms, and evaluate community and ecosystem response; 4) Determining the capacity of important species to acclimate or adapt to changing ocean conditions; 5) Considering multi-disciplinary, ecosystem-level research that examines acidification impacts on biodiversity and biotic interactions; and 6) Connecting potential acidification-induced ecological impacts to ecosystem services and the economy. These recommendations, while developed for the Mid-Atlantic, can be applicable to other regions will help align research towards knowledge of potential larger-scale ecological and economic impacts

    Projecting ocean acidification impacts for the Gulf of Maine to 2050: new tools and expectations

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Siedlecki, S. A., Salisbury, J., Gledhill, D. K., Bastidas, C., Meseck, S., McGarry, K., Hunt, C. W., Alexander, M., Lavoie, D., Wang, Z. A., Scott, J., Brady, D. C., Mlsna, I., Azetsu-Scott, K., Liberti, C. M., Melrose, D. C., White, M. M., Pershing, A., Vandemark, D., Townsend, D. W., Chen, C,. Mook, W., Morrison, R. Projecting ocean acidification impacts for the Gulf of Maine to 2050: new tools and expectations. Elementa: Science of the Anthropocene, 9(1), (2021): 00062, https://doi.org/10.1525/elementa.2020.00062.Ocean acidification (OA) is increasing predictably in the global ocean as rising levels of atmospheric carbon dioxide lead to higher oceanic concentrations of inorganic carbon. The Gulf of Maine (GOM) is a seasonally varying region of confluence for many processes that further affect the carbonate system including freshwater influences and high productivity, particularly near the coast where local processes impart a strong influence. Two main regions within the GOM currently experience carbonate conditions that are suboptimal for many organisms—the nearshore and subsurface deep shelf. OA trends over the past 15 years have been masked in the GOM by recent warming and changes to the regional circulation that locally supply more Gulf Stream waters. The region is home to many commercially important shellfish that are vulnerable to OA conditions, as well as to the human populations whose dependence on shellfish species in the fishery has continued to increase over the past decade. Through a review of the sensitivity of the regional marine ecosystem inhabitants, we identified a critical threshold of 1.5 for the aragonite saturation state (Ωa). A combination of regional high-resolution simulations that include coastal processes were used to project OA conditions for the GOM into 2050. By 2050, the Ωa declines everywhere in the GOM with most pronounced impacts near the coast, in subsurface waters, and associated with freshening. Under the RCP 8.5 projected climate scenario, the entire GOM will experience conditions below the critical Ωa threshold of 1.5 for most of the year by 2050. Despite these declines, the projected warming in the GOM imparts a partial compensatory effect to Ωa by elevating saturation states considerably above what would result from acidification alone and preserving some important fisheries locations, including much of Georges Bank, above the critical threshold.This research was financially supported by the Major Special Projects of the Ministry of Science and Technology of China (2016YFC020600), the Young Scholars Science Foundation of Lanzhou Jiaotong University (2018033), and the Talent Innovation and Entrepreneurship Projects of Lanzhou (2018-RC-84)

    The East River tidal strait, New York City, New York, a high-nutrient, low-chlorophyll coastal system

    No full text
    Abstract The East River tidal strait, located between New York Harbor and Western Long Island Sound, is characterized by high suspended silt concentrations with low organic content kept in suspension by intense tidal currents. Inorganic nutrients, including nitrate, nitrite, ammonia, and phosphate, were high even during the summer. Dissolved inorganic nitrogen (DIN) concentrations generally were above 20 µM and did not likely limit phytoplankton growth. Despite high nutrient concentrations, median chlorophyll a concentration was only 1.53 µg l−1, making the East River tidal strait a high-nutrient, low-chlorophyll (HNLC) area, likely a result of suspended silt blocking light penetration into the surface water. There were times at which the ratio of mixed layer to depth of the euphotic zone was generally greater than what has been suggested for phytoplankton to produce net primary production. The high-nutrient East River tidal strait is likely one of the sources of nutrients fueling summer phytoplankton production and consequent hypoxia in the Western Long Island Sound as silt settles from surface water in the lower turbulence conditions of the western narrows of Long Island Sound, thereby allowing light penetration and subsequent consumption of dissolved nutrients by phytoplankton

    Ocean Acidification Affects Hemocyte Physiology in the Tanner Crab (Chionoecetes bairdi).

    No full text
    We used flow cytometry to determine if there would be a difference in hematology, selected immune functions, and hemocyte pH (pHi), under two different, future ocean acidification scenarios (pH = 7.50, 7.80) compared to current conditions (pH = 8.09) for Chionoecetes bairdi, Tanner crab. Hemocytes were analyzed after adult Tanner crabs were held for two years under continuous exposure to acidified ocean water. Total counts of hemocytes did not vary among control and experimental treatments; however, there were significantly greater number of dead, circulating hemocytes in crabs held at the lowest pH treatment. Phagocytosis of fluorescent microbeads by hemocytes was greatest at the lowest pH treatment. These results suggest that hemocytes were dying, likely by apoptosis, at a rate faster than upregulated phagocytosis was able to remove moribund cells from circulation at the lowest pH. Crab hemolymph pH (pHe) averaged 8.09 and did not vary among pH treatments. There was no significant difference in internal pH (pHi) within hyalinocytes among pH treatments and the mean pHi (7.26) was lower than the mean pHe. In contrast, there were significant differences among treatments in pHi of the semi-granular+granular cells. Control crabs had the highest mean semi-granular+granular pHi compared to the lowest pH treatment. As physiological hemocyte functions changed from ambient conditions, interactions with the number of eggs in the second clutch, percentage of viable eggs, and calcium concentration in the adult crab shell was observed. This suggested that the energetic costs of responding to ocean acidification and maintaining defense mechanisms in Tanner crab may divert energy from other physiological processes, such as reproduction

    Direct measurements of the nutrient management potential of ribbed mussels, Geukensia demissa, at two sites in upper Narragansett Bay, Rhode Island

    No full text
    Abstracts of Shellfish Technical Papers, presented at the Joint Meeting of the Northeast Aquaculture Conference and Exposition and the 35th Milford Aquaculture Seminar, 14-16 January 2015, Portland, Maine.-- 1 pagePeer Reviewe

    The percentage of phagocytic hemocytes in <i>Chionoecetes bairdi</i>, Tanner Crab, from each pH treatment.

    No full text
    <p>The error bars represent the standard error and a different letter indicates a significant difference between treatments.</p
    corecore