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ABSTRACT

MODELING THE BIOGEOCHEMICAL CYCLE OF SELENIUM IN THE
SAN FRANCISCO BAY

Shannon L. Meseck 
Old Dominion University, 2002 

Director: Gregory A. Cutter

Due to recent concerns about selenium toxicity in the San Francisco Bay and the 

roles of refinery and San Joaquin River inputs on the selenium cycle, the model ECoS 3 

(distributed from Plymouth Marine Laboratory, United Kingdom) was modified to 

simulate the biogeochemical cycle of selenium in the Northern Reach. The model is 

designed to simulate salinity, total suspended material, phytoplankton concentrations, 

dissolved selenium and its speciation (selenite, selenate, and organic selenide), and 

particulate selenium and its speciation (selenite+selenate, elemental selenium, and 

organic selenide). Actual data from 1999 were used to calibrate the model, while data 

from other sampling periods (1986-1988 and 1997-1998) were then compared to model 

simulations to verify its accuracy. The sensitivity of the model to specific inputs of 

selenium was also determined. These results indicate that dissolved selenium is largely 

controlled by riverine and refinery inputs, while particulate selenium is a function of 

phytoplankton productivity and riverine inputs of sediment. Forecasting simulations 

included increasing the San Joaquin River discharge to the Delta and varying refinery 

discharges to the Bay. These simulation results indicate that total particulate selenium 

concentrations may increase in the entire Bay to 1 pg g '1 if the San Joaquin Flow is 

increased. This concentration is twice as high as the current estuarine average particulate 

selenium and at the level where the concentration of selenium in Potomocorbula
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amurensis becomes problematic for estuarine predators. Furthermore, simulations 

suggest that doubling the current refinery loads as selenate have little effect on the 

particle-associated selenium in the estuary. Simulated data from the model can be used in 

other models to predict selenium concentrations in higher trophic levels. Furthermore the 

model can be used as a template to study the biogeochemical cycle of other elements in 

well-mixed estuaries, and in restoration projects, pollution control and other trophic 

transfer scenarios.
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1

CHAPTER I 

GENERAL INTRODUCTION

1.1. INTRODUCTION

When a trace element is introduced into an aquatic ecosystem, chemical reactions 

occur that produce a variety of chemical forms including: organic complexes (e.g., CuLi), 

inorganic complexes (e.g., ZnCEjZnCh), and different oxidation states (e.g., Hg1'2, Hg°). 

The chemical form, or speciation, of a trace element determines its chemical and 

biochemical reactivity (Sunda. 1988; Bruland et ai., 1991). Trace elements undergo 

chemical and biological reactions as they are transported by rivers to the ocean through 

estuaries. Estuaries are defined as "semi-enclosed coastal bodies of water which have free 

connections to the open sea. extending into the river as far as the limit of tidal influence, 

and within which sea water is measurably diluted with fresh water derived from land 

drainage" (Dyer. 1997). The mixing of fresh water with sea water causes a change in 

ionic strength, which can affect the speciation of an element. For example, dissolved 

cadmium in river water is predominantly found as free Cd2+, but as river water mixes with 

seawater, the speciation of cadmium is altered to cadmium sulfate complexes (Comans 

and Van Dijk, 1988). Because estuaries are highly dynamic areas with enhanced 

biological productivity (Kennish, 1990), removal of a trace element can occur due to 

biological uptake during estuarine transport (e.g., iron; Gobler et al., 2002).

Past studies of trace elements in estuaries have focused on the speciation of an

The model journal for this dissertation was Marine Chemistry
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element in the dissolved phase (e.g., Boughriet et al., 1992; Kozelka and Bruland, 1998: 

Michel et al., 1999), and total concentrations in the particulate phase (e.g., Guentzel et al., 

1996; Michel et al, 1999, Zwolsman and van Eck, 1999), in sediments (e.g., Robbe et al., 

1985; Jones and Turki, 1997), and in organisms (e.g., Fowler and Benayoun, 1976; Sunda, 

1988; Luoma et al., 1992). Additionally, extensive research has been done on modeling 

how either the physical, biological, or chemical parameters in an estuary individually 

affect the distribution and speciation of a trace element (e.g., Paucot and Wollast, 1997; 

Baeyens et al., 1998; Mwanuzi and De Smedt, 1999), but little work has been done in 

using models to simulate the complete biogeochemical cycle of a trace element (i.e., 

coupling physical, biological and chemical processes). With recent advances in estuarine 

modeling, more extensive simulations of the biogeochemical cycle of an element are now 

possible.

This study used estuarine modeling to simulate the biogeochemical cycle of the 

metalloid element selenium in the San Francisco Bay estuary, concentrating on its 

different chemical species. Selenium was chosen because it is essential for all organisms, 

but can become toxic depending on its chemical speciation and concentration (e.g., 

Lindstrom and Rodhe, 1978; Wehr and Brown. 1985; Price et al., 1987; Doblin et al., 

1999). Added benefits to studying selenium are that there are no contamination problems 

during sampling and analysis as with some trace metals (e.g., mercury and zinc), and the 

methodology used to determine the speciation of selenium is well developed (Cutter, 

1978; 1983; 1992). The San Francisco Bay is an ideal study area because extensive 

research has been done to understand its physical characteristics (i.e.. its flow regime and
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morphology; Walter and Garrner, 1985; Smith et al., 1991; Uncles and Peterson, 1996), 

how selenium affects benthic organisms (e.g., Macoma balthica; Johns et al., 1988), and 

processes controlling the chemical speciation of selenium in the dissolved and particulate 

phases (Cutter, 1989a; Cutter and San Diego-McGlone, 1990). Specific objectives of this 

study were to:

1) Determine the concentration, distribution, and speciation of selenium in 

San Francisco Bay sediments. These results are presented in Chapter II.

2) Modify an existing biogeochemical model so that it simulates the 

estuarine cycle of selenium, including its speciation. The sensitivity 

analysis and calibration of the model are discussed in Chapter HI. 

Validation of the model is presented in Chapter IV.

3) Predict how a change in physical, biological, or chemical parameters 

will affect the concentration, distribution, and speciation of selenium in 

the San Francisco Bay. These predictions are discussed in Chapter IV.

4) Evaluate the limitations of the model and research knowledge about the 

biogeochemical cycle of selenium. This assessment will be discussed in 

Chapter V.

The remainder of this Chapter is focused on a review of the biogeochemistry of selenium, 

what is already known about selenium in the San Francisco Bay, and a description of the 

model.
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1.2. BIOGEOCHEMISTRY OF SELENIUM 

1.2.1 Selenium Biogeochemistry Review

Selenium is an essential element for plants, animals, and humans (Schwarz and 

Foltz, 1957; Kolbl, 1995) since it is required in several enzymes and proteins (Stadtman, 

1990; Wendel, 1992). Selenium can be found in many different environments, including 

soils, fresh water, seawater, and sediments, with concentrations varying from I O'7 to 

several thousand mmol kg'1 (Kolbl, 1995). Even though selenium is found naturally in 

the environment, its mobility has increased due to human activities (i.e., irrigation, 

petroleum refining, power production and mining; Nriagu and Pacyna, 1988). This 

increase in mobility may have contributed to elevated concentrations in waterfowl, fish, 

and bivalves of some estuaries (Ohlendorf et al., 1986).

Selenium is a Group VI element (atomic number 34, mass 78.962) and is in the 

same family as oxygen, sulfur, tellurium and polonium. Selenium can exist in four 

oxidation states (-II, O. IV, and VI; Geering et al., 1968; Cutter and Bruland, 1984;

Cutter, 1992), and in different chemical forms (e.g., organic and inorganic) within these 

oxidation states (Cutter 1989b). An Eh versus pH diagram for selenium in an aqueous 

environment predicts that in oxygenated water of an estuary, dissolved selenium should 

be present exclusively as selenate, while in anoxic water elemental selenium is the stable 

form (Fig. I). The problem with using an Eh versus pH diagram is that it does not take 

into account kinetic effects and biologically-mediated reactions (Stumm and Morgan,

1981). As an illustration, in oxygenated marine and fresh waters, dissolved selenium is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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found as selenite (i.e., 35% of the total selenium; Measures et al., 1980), selenate, and 

organic selenides (Apte et al., 1986), contrary to thermodynamic predictions. An 

explanation of why thermodynamically unstable species are present in oxygenated waters 

is that selenium (primarily in the form of organic selenides) is regenerated from biogenic 

particles in multiple steps, producing the thermodynamically unstable species, and slow 

rates of inter-conversion then allow them to persist (Cutter, 1992). Understanding this 

chemical speciation of selenium in aquatic environments is important since the biotic and 

abiotic reactivity of selenium is a function of its chemical form (Wrench and Measures, 

1982; Cutter and Bruland, 1984).

1.2.2. Dissolved Selenium in Marine Environments

The biogeochemical cycle of selenium in an estuary is dependent upon its 

speciation and concentration at the freshwater and seawater end members. Dissolved 

selenium concentrations at the freshwater end member range from 0.5 to 4.9 nmol L'1 

(Measures and Burton, 1978; Takayanagi and Wong, 1984 ; Takayanagi and Cossa, 1985; 

Cutter, 1989a). In rivers, approximately 7 to 60% of the total dissolved selenium is 

selenite, 20 to 87% is selenate, and less than 10% is organic selenide (Cutter. 1989a). In 

the James River, Takayanagi and Wong (1984), determined that selenite and organic 

selenide were the dominant species, while in the St. Lawrence River selenite was the 

dominant species (i.e., 70% of the total dissolved selenium, Takayanagi and Cossa,

1985).

The behavior of selenium in estuarine waters has been studied by many
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researchers (Measures and Burton, 1978; Takayanagi and Wong, 1984; Takayanagi and 

Cossa, 1985; van der Sloot et al., 1985; Cutter, 1989b). In partially mixed estuaries like 

the St. Lawrence (Takayanagi and Cossa, 1985) and the Chesapeake Bay (Takayanagi and 

Wong, 1984), total dissolved selenium displayed conservative behavior during estuarine 

mixing (Fig. 2; Takayanagi and Cossa, 1985). In well-mixed estuaries like the San 

Francisco Bay, total dissolved selenium also behaves conservativly (Cutter, 1989b). Even 

though total dissolved selenium is conservative, dissolved selenite, selenate, or organic 

selenide often display non-conservative behavior in both partially-mixed and well-mixed 

estuaries. At low salinity (< 4), removal of selenite has been reported in the James River 

(Takayanagi and Wong, 1984) and the St. Lawrence River estuaries (Takayanagi and 

Cossa, 1985). In the James River. Takayanagi and Wong (1984) suggested that chemical 

conditions may favor the oxidation of selenite to selenate, thus causing a removal of 

selenite. As with selenite, non-conservative behavior of selenate has also been observed 

in the Chesapeake Bay (Takayanagi and Wong, 1984) and the San Francisco Bay (Cutter, 

1989b). In the San Francisco Bay, selenate displayed non-conservative behavior with 

removal in the salinity range of 6 to 12 (Cutter, 1989b), while in Chesapeake Bay there 

was production of selenate (Takayanagi and Wong, 1984). Like inorganic selenium, 

organic selenide can behave non-conservatively or conservatively. For example, in the 

San Francisco Bay dissolved organic selenide behaves non-conservatively and is 

approximately 35 to 45% of the total selenium (Cutter. 1989b), while in the St. Lawrence 

estuary organic selenide is conservative and 10 to 30% of the total selenium (Takayanagi 

and Cossa, 1985). Organic selenide maxima in the San Francisco Bay correlate with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Fig. 2. Dissolved selenium from the St. Lawrence Estuary. 
The selenium data are from Takayanagi and Cossa (1985).
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chlorophyll-a concentrations, suggesting that the non-conservative behavior of organic 

selenide is from biological activity (Cutter, 1989b).

In highly polluted estuaries (e.g., Scheldt River estuary, Belgium) the speciation 

of selenium tends to be different than in less polluted estuaries. In the Scheldt, 85% of 

the total dissolved selenium is in the form of selenite (van der Sloot et al., 1985), but in 

the less polluted River Test estuary (Measures and Burton, 1978), selenite averages less 

than 10% of the total dissolved selenium. Thus, the difference between the speciation of 

selenium in highly polluted and "non-polluted” estuaries makes it possible to use the 

speciation as a "signature" of specific inputs and cycling processes.

The seawater end member usually has a lower concentration of total dissolved 

selenium than the fresh water end member. Total dissolved selenium in sea water is 

approximately I nmol L'1 in surface waters, and 80% of the total dissolved selenium is 

organic selenide (Cutter and Bruland, 1984). Selenate is the next most predominant 

species in surface seawater, while selenite concentrations remain uniformly low (Cutter 

and Bruland, 1984). The transport of river water to the ocean results in a change in 

concentration of selenium and its speciation. Thus, estuaries are important in the in situ 

production and removal of dissolved selenium forms.

1.2.3. Particulate Selenium

Little research has been done on particulate selenium in estuaries, where it can be 

from riverine inputs, sea water inputs, sediment resuspension, and in situ production (e.g., 

phytoplankton). The latter term is important in the transfer of selenium to other estuarine
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trophic levels. Decho and Luoma (1996) found that consumers (e.g., clams) assimilate 

particulate selenium of biological origin (e.g., bacteria and phytoplankton) faster than 

from sedimentary particles. Furthermore, Schelkat et al. (2000) found that elemental 

selenium created by microbial reduction (i.e., in estuarine sediments) is assimilated at a 

greater rate than abiotically produced elemental selenium. Therefore, sources of 

particulate selenium are important in the uptake, assimilation, and trophic transfer of 

selenium.

The only available data for particulate selenium in an estuary is that of Cutter 

( 1989b) who measured total particulate selenium concentrations in the San Francisco Bay 

(no speciation data). The range of total particulate selenium was between 0.04 to 0.39 

nmol L'1 (7% of the total selenium in the water column), with an estuarine distribution 

that was similar to the total suspended material (Cutter, 1989b).

1.2.4. Sedimentary Selenium

Only a few researchers have examined sedimentary selenium in oceanic 

(Sokolova and Pilipchuk, 1973; Tamari, 1978) or estuarine waters (Belzile and Lebel. 

1988; Takayanagi and Belzile, 1988; Velinsky and Cutter, 1991). In both oceanic and 

estuarine sediments, a positive relationship between total sedimentary selenium and 

organic carbon (O Q  and iron have been reported (Sokolova and Pilipchuck, 1973; 

Tamari, 1978; Belzile and Lebel, 1988). The correlation between selenium and organic 

carbon indicates that selenium may be biologically removed from the water column (i.e., 

incorporation by phytoplankton), while the iron-selenium relationship may be due to its
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association with iron-sulfide minerals (e.g., pyrite or ferroselite).

The solubility of sedimentary selenium is dependent on its oxidation state, and 

can thus affect its mobility (Velinsky and Cutter, 1991). Both biotically and abiotically 

controlled reactions can change the oxidation state and/or phase of selenium. For 

example, dissimilatory reduction of selenite or selenate to elemental selenium may be a 

mechanism by which selenium is incorporated and retained in sediments (Rosenfeld and 

Beath, 1964; Elrashidi et al., 1989). Other possible reactions include the release or 

oxidation of particulate organic selenide, the oxidation of elemental selenium to dissolved 

selenite, scavenging of dissolved selenite by iron or manganese oxides, and the formation 

of solid phase selenium minerals such as achavalite (FeSe) or ferroselite (FeSei)

(Velinsky and Cutter, 1991; Belzile et al., 2000).

In marine sediments, total sedimentary selenium concentrations range from 4.6 

nmol g '1 to 16.2 nmol g '1 (Takayanagi and Belzile, 1988:VeIinsky and Cutter, 1991;

Peters et al. 1999; Belzile et al. 2000). A typical solid-phase depth profile of total 

selenium (Takayanagi and Belzile, 1988) shows that concentrations remain relatively 

constant with depth (Fig. 3). Velinsky and Cutter (1991) and Peters et al. (1999) found a 

similar trend, with some sites occasionally showing a decrease in total selenium with 

depth. According to Eh/pH stability field diagrams (Fig. I), elemental selenium should 

be the dominant form of selenium in anoxic sediments (Geering et al., 1968; Lakin, 1973;
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Howard, 1977; Elrashidi et al., 1987). The speciation of selenium in sediments from a 

Delaware salt marsh (Fig. 4A) shows that elemental selenium at the surface ranged from 

58 to 71% of the total selenium (Velinsky and Cutter. 1991), somewhat confirming these 

predictions for anoxic sediments. When these sediments become oxic, a slight decrease 

in elemental selenium near the surface may be found due to the oxidation of elemental 

selenium via abiotic and/or biotic processes. The abiotic oxidation of elemental selenium 

is slow (Geering et al., 1968; Howard, 1977), suggesting that any decrease in elemental 

selenium may be from the biologically mediated oxidation of elemental selenium to 

selenite (Sarathchandra and Watkinson, 1981).

Particulate (adsorbed) selenite + selenate account for a maximum of 30% of total 

sedimentary selenium and decreased with depth in salt marsh sediments (Fig. 4B. 

Velinsky and Cutter. 1991). Decreases in selenite + selenate can be related to biological 

uptake, conversion to either elemental selenium or other selenium phases, or 

remobilization to pore waters (Velinsky and Cutter, 1991). Unlike the inorganic 

sedimentary selenium, organic selenide had no consistent trend with depth (Fig. 4 Q  and 

was as high as 70% of the total sedimentary selenium in salt marsh sediments (Velinsky 

and Cutter, 1991).

Pore water determinations provide information on the remineralization of solid 

phase sedimentary selenium. Limited speciation data from a Delaware salt marsh 

indicate that in the oxidizing portion of pore water, selenite + selenate accounted for 50% 

of the total dissolved selenium (Velinsky and Cutter, 1991). The concentration of
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pore water selenite + selenate decreased with depth (and degree of anoxia) until dissolved 

organic selenide accounted for 100% of the total dissolved selenium in the Delaware salt 

marsh. Belzile et al. (2000) also reported that dissolved organic selenide was the 

dominant form in pore water from fresh water sediments, but after 5 cm the organic 

selenide concentration dropped. Belzile et al. (2000) suggested that the maximum of 

dissolved organic selenide at 5 cm was probably due to decomposition of particulate 

organic matter, while the decrease may be due to the formation of particulate elemental 

selenium by bacteria.

Takayanagi and Belzile (1988) and Belzile et al. (2000) found that the flux across 

the sediment-water interface might be important in the transfer of sedimentary selenium 

to the overlying water. In the St. Lawrence Estuary, the loss of Ieachable sedimentary 

selenium in the sediments matched the upward flux of dissolved selenium out of the 

sediments (Takayanagi and Belzile, 1988), suggesting that diagenetic processes were 

responsible for the mobilization of sedimentary selenium. The various chemical and 

biological reactions occurring in sediments can change the mobility and speciation of 

selenium. Therefore, more research needs to be done on sedimentary selenium to better 

evaluate the exchange pathways between the dissolved and particulate phases.

1.2.5. Selenium In Phytoplankton and Higher Trophic Levels

Phytoplankton plays an important role in the biogeochemical cycle of selenium by 

biologically mediating the transformation of selenium from one chemical form to another 

(Wrench, 1978; Cutter, 1982; Cooke and Bruland, 1987), by utilizing dissolved selenium
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for growth, and by acting as a food source to higher organisms (i.e., responsible for 

selenium transfer to other trophic levels). Selenium is both essential and toxic for several 

species of dinoflagellates (Lindstrom and Rodhe, 1978; Lindstrom, 1980; Ishimaru et al., 

1989; Doblin et al., 1999), diatoms (Price et al., 1987), and chrysophytes (Wehr and 

Brown, 1985). The utilization of selenium by phytoplankton is dependent on the 

speciation of selenium. For example, the marine diatom Thalassiosira pseiidonana 

requires trace amounts (0.1 to I nmol L'1) of selenite for growth and it will not grow even 

if other forms of selenium are present at concentrations greater than 10 nmol L'1 (Price et 

al., 1987). Furthermore, Hu et al. (1996) demonstrated that the diatom Chaetoceros 

calcitrans and green algae Chlorella vulgaris are able to distinguish between inorganic 

and organic selenium species; they preferentially incorporated selenite. For most 

phytoplankton, selenite is assimilated more rapidly than selenate (Kumar and Prakash, 

1971; Price et al., 1987; Riedel et al., 1996). Thus, the speciation of selenium affects 

phytoplankton growth.

The toxicity of selenium is also dependent on the speciation of selenium (Kumar 

and Prakash, 1971; Price et al., 1987; Boisson et al., 1995; Riedel et al., 1996). Effects of 

toxicity on phytoplankton can include a decrease in phytoplankton growth (Bennett,

1988; Wong and Oliveira. I991a,b), morphological affects (Wong and Oliveira, I99Ia.b), 

changes in respiratory and photosynthetic rates (Wong and Oliveira, 199la,b), and 

changes in nucleus, mitochondria, and chloroplasts of the cells (Wong and Oliveria, 

1991b). At concentrations greater than I O'4 mol L'1 of selenite the growth of several 

phytoplankton species (Dunaliella tertiolecta, Agemenellum quadruplicatum.
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Nannochloropsis oculata, Povlova lutheri) is inhibited, but at concentrations of 10'5 mol 

L*1 growth is stimulated for these species (Wong and Oliveria, 1991a). For selenate, at 

concentrations of I O '2 to 10 3 mol L'1 growth is completely inhibited for several 

freshwater algae (Dunaliella tertiolecta, Agemenellum quadruplicatum, Nannochloropsis 

oculata, Chaetoceros vixvisibilis). The toxicity of selenium to phytoplankton are 

dependent on the phytoplankton species but several researchers have reported higher 

toxicity for selenate than selenite (Price et al., 1987; Bennett, 1988; Wong and Oliveira, 

I99la,b). Concentrations in seawater are in the range of 10‘8 to 10*l° mol L'1 indicating 

that in natural marine environment toxicity affects are minor.

Once phytoplankton take up selenium, it can be incorporated into various 

biochemical components such as amino acids, proteins, soluble carbohydrates, lipids and 

polysaccharides (Bottino et al., 1984; Vandermeulen and Foda, 1988). Wrench (1978) 

and Bottino et al. (1984) found that most of the selenium in phytoplankton was found in 

seleno amino acids. The ability of phytopiankton to incorporate selenium into 

biochemical components may be important in the transfer of selenium through the food 

web because it can be transferred to the next trophic level with great efficiency. For 

example, calanoid copepods are able to assimilate 97% of the ingested selenium from T. 

pseudonana (a diatom; Fisher and Reinfelder, 1991) and other herbivores such as mollusk 

and crustacean larvae assimilate 6 1 to 100% of the selenium ingested from phytopiankton 

(Reinfelder and Fisher, 1994). Thus, one of the possible routes for the transfer of 

selenium to higher trophic levels (e.g., fish and clams) is through phytopiankton.

The ability of higher trophic levels to directly take up selenium from the dissolved
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phase has also been investigated. Past research indicates that the direct uptake of 

dissolved selenium to clams, fish, and waterfowl appears to be minimal. Luoma et al. 

(1992) found that the direct uptake of selenium was extremely slow for the clam Macoma 

balthica. Furthermore, a food-chain experiment by Sandholm et al. (1973) showed that 

high selenium concentrations reported in fish resulted from high selenium content in 

plankton on which they feed, not on direct water uptake. Direct uptake is minimal 

compared to trophic-level transfer because of the low epithelial adsorption or blood 

adsorption through the gills (Sandholm et al., 1973). As a result, the uptake of selenium 

through food web components, with phytopiankton being the first step, is a key factor for 

higher trophic levels.

13. SAN FRANCISCO BAY

13.1. Hydrology and Morphology

San Francisco Bay is considered the largest estuary in the United States to be 

modified by human activities (Nichols et al., 1986). Since the early 1900s, the surface 

area and depth of the Bay have decreased, marshes have been destroyed, fresh water 

diverted for irrigation, exotic plants and animals introduced, and the effects of sewage 

and refinery effluents have become apparent (Nichols et al., 1986). The San Francisco 

Bay has a total surface area of 1240 km2, with an average depth of 6.1 m (Conomos et al.,

1985) and is divided into what is known as the "Northern Reach” and the South Bay. The 

Northern Reach includes Central Bay, San Pablo Bay, and Suisun Bay (Fig. 5). Seawater 

enters the Bay through the Golden Gate and can either proceed north into the Northern
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Reach or south into the South Bay. The Northern Reach is a strongly tidal, well to 

partially mixed estuary, while the South Bay is a strongly tidal, lagoon-type estuary with a 

small freshwater inflow (Uncles and Peterson, 1996). My research focused on the 

Northern Reach since it has many features common to other estuaries (e.g., short 

residence time, strong tidal influences, well to partially mixed, and natural and 

anthropogenic inputs of selenium), and I will thus omit further discussion of the South 

San Francisco Bay.

Two major rivers enter the Northern Reach of the San Francisco Bay, the 

northward-flowing San Joaquin River and the southward-flowing Sacramento River. 

These rivers carry runoff from 153,000 km2 of land, which is 40% of the surface area in 

California (Nichols et al., 1986), and join at the San Francisco Bay ‘Delta’ (Fig. 5). The 

average freshwater residence time in the Northern Reach is 2 to 160 days depending on 

the discharge from the Sacramento-San Joaquin Rivers (Cutter, 1989b). Historical data 

(Conomos et al., 1979) show that discharge into the Delta varies seasonally, with 

maximum river discharge occurring in January-February and minimum discharge during 

July-August. During most of the year, the San Joaquin discharge rate is low, with little or 

no water entering the estuary (Arthur and Ball, 1979). In fact, from 1984 to 1987 the San 

Joaquin River only discharged into the Bay during April and May 1986 (Cutter, 1989b). 

Approximately 98% of the flow from the San Joaquin River is diverted for irrigation 

practices, which leaves the lower part of the river dependent on fresh water disposal from 

agricultural drainage (Presser and Piper, 1998). Thus, the Sacramento River largely 

defines the riverine input of selenium into the Northern Reach.
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1.3.2. Dissolved Selenium in the Northern Reach

The concentration of selenium in the Northern Reach is dependent upon the input 

from the Sacramento River and San Joaquin River (when flowing), petroleum refinery 

effluents, and the Pacific Ocean. Comparison of the discharge from the Sacramento 

River and total selenium and selenate concentrations, show a positive linear correlation 

(Cutter, 1989b). Thus, during the winter months when the discharge is high more total 

dissolved selenium fluxes into the Bay than in the summer months when the discharge is 

low (Cutter, 1989b). From July 1984 to June 1988, total dissolved selenium concentration 

in the Sacramento River ranged from 0.5 to 1.40 nmol L'1, with an average total selenium 

concentration of 0.86 nmol L 1, with selenate representing 48% of the total dissolved 

selenium, organic selenide 40%, and selenite less than 12% (Cutter, 1989b). Recent data 

from November 1998 to May 2000 suggests that the input of selenium from the 

Sacramento has not changed since 1984 (Cutter and Cutter, in prep.). The range of total 

dissolved selenium was 0.67 to 1.37 nmol L'1 with an average concentration of 0.94 nmol 

L'1. The percentage of each species has also remained the same, suggesting that the input 

of selenium from the Sacramento River is stable on decadal time scales.

Even though the San Joaquin River rarely discharges into the Northern Reach, the 

EPA and other state, federal, and local agencies in the State of California have been 

developing an integrated ecosystem-based approach to restoring the ecological health of 

the estuary and the San Joaquin River (http://calfed.water.ca.gov). These approaches 

include restoring freshwater tidal marshes, riparian habitats, reversing subsidence on 

Delta islands, providing adequate flows to replicate natural hydrological patterns,
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removing barriers (e.g., obsolete dams), and reducing pollutant loading in the San Joaquin 

watershed (http://calfed.water.ca.gov). Restoration of the San Joaquin flow could affect 

the estuarine concentration of selenium due to high concentrations in this river. Between 

July 1984 and June 1988, the San Joaquin River had total dissolved selenium 

concentrations ranging from 1.7 to 59.4 nmol L‘l (average 20.3 nmol L*1), with selenate 

being 74% of the total dissolved selenium, organic selenide 19%, and selenite 7% (Cutter, 

1989b). Recent data from November 1998 to April 2000 indicate that total dissolved 

selenium concentrations have decreased to 4.6 to 13.7 nmol L '1 (average 8.6 nmol L'1; 

Cutter and Cutter, in prep.). The speciation data was slightly different than in the 1980’s, 

with selenate being 66% of the total, organic selenide 31%, and selenite 3%. The decadal 

variation and high concentrations of dissolved selenium in the San Joaquin River suggest 

that it is important to understand how restoring its flow would affect the distribution of 

selenium in the Bay.

Estuarine transects in the Northern Reach during April 1986 (high flow 

conditions), with a third end member (the San Joaquin River), shows that total dissolved 

selenium was nearly conservative in the Bay, with concentrations ranging between 1.4 to

3.0 nmol L'1 (Fig. 6A). The selenite estuarine profile however shows non-conservative 

behavior, with a dissolved selenite maximum concentration at a salinity of 9 where it is 

23% of the total dissolved selenium (Fig. 6B, Cutter, 1989b). Selenate, on the other 

hand, displayed non-conservative removal between a salinity of 6 to 12 (Fig. 6C). In 

most of the Northern Reach, selenate averaged 49% of the total dissolved selenium, 

except at the top of the estuary where it averaged 82% (Cutter, 1989b). Organic selenide
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was 35 to 44% of the total dissolved selenium within the Bay, and displayed non

conservative behavior, with the maximum organic selenide concentration occurring at a 

salinity of 10 and at the Golden Gate (Fig. 6D).

The total dissolved selenium data for low flow conditions in September 1986 

were significantly different than those in April 1986. The total selenium concentration in 

September was non-conservative and ranged between 1.6 to 3.6 nmol L'1 (Fig. 7A), with 

a maximum occurring at a salinity between 10 to 20 (Cutter 1989b). Cutter ( 1989b) 

found during low flow selenite was still non-conservative, but the selenite maximum 

between the salinity of 9 to 20 increased to 41% of the total dissolved selenium (Fig. 7B).

The selenate versus salinity profile during low flow was different than that in high 

flow. There was still a slight maximum between a salinity of 10 to 14, but overall it was 

largely conservative and approximately 33% of the total dissolved selenium (Fig. 7B).

As with the April 1986 data, organic selenide was non-conservative and had a maximum 

that corresponded with the location of elevated concentrations of chlorophyll-a. Organic 

selenide was 3 1 to 48% of the total dissolved selenium, with a higher percentage located 

at the top of the estuary (Fig. 7D, Cutter 1989b).

Cutter (1989b) and Cutter and San Diego-McGlone (1990) reported dissolved 

selenite maxima in the vicinity of Carquinez Strait taken where six oil refineries are 

located (Fig. 5). At this time, refinery effluents had total dissolved selenium 

concentrations of 100 to 2600 nmol L'1, with 64% of the total selenium being selenite and 

25% selenate. Using estuarine modeling, Cutter (1989b) calculated the input fluxes at 

Carquinez Strait during low flow conditions. By comparing the calculated fluxes to the
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measured fluxes from oil refinery effluents, it was determined that 60% of the total 

selenium flux, virtually all of the selenite flux, 40% of the selenate flux, and 24% of the 

organic selenide flux could be traced to refinery effluents (Cutter 1989b).

From 1997 to 2000, estuarine transects in the San Francisco Bay were taken in the 

fall and spring to determine if dissolved selenium profiles had changed from the 1980’s. 

Cutter and Cutter (in prep.) found that in November 1999 total dissolved selenium was 

between 0.9 to 1.5 nmol L'1 (Fig. 8A), which is lower than the total dissolved selenium 

concentrations previously reported by Cutter ( 1989b). Estuarine profiles of selenite still 

show non-conservative behavior, but the selenite concentration decreased from a 

maximum value of 1.32 nmol L '1 in 1986 to 0.24 nmol L'1 in 1999 (Fig. 8B). Selenite 

was now 9 to 25% of the total selenium. Selenate also behaved non-conservatively (Fig. 

8C) and averaged 65% of the total dissolved selenium in the estuary, with a higher 

percentage in the salinity range of 15 to 20. Organic selenide had a maximum between a 

salinity of 10 to 20, which corresponded with higher chlorophyll-a concentrations (Fig. 

8D). Organic selenide was 10 to 30% of the total dissolved selenium. In 1999. compared 

to 1986, there has been an observed change in the speciation and concentration of 

dissolved selenium in the Bay.

Refinery effluent data in 1999 indicate that total dissolved selenium 

concentrations dropped from 100 to 2600 nmol L'1 (an average of 689 ± 592 nmol L*1) in 

1986 to 90 to 390 nmol L '1 ( an average of 207 ± 131 nmol L'1) in 1999, with selenite 

being 14% of the total dissolved selenium and selenate 61% of the total. Cutter and 

Cutter (in prep.) found that the concentration of the Sacramento River has not varied in
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the last decade, suggesting that the decreased dissolved selenium concentrations in the 

estuary may be due to the decrease in inputs by the refineries (i.e., a 30% reduction since

1986).

1 3 3 . Particulate Selenium in the Northern Reach

Cutter ( 1989b) found that total particulate selenium concentration regardless of 

whether it was high flow or low flow ranged from 0.15 nmol L‘l to 0.39 nmol L'1 

(corresponding to 0.42 pg g '1 to 0.72 pg g‘l) during April and September of 1986 (Fig. 9A 

and Fig. 9B, respectively). During high flow and low flow (Fig. 9) the suspended 

particulate selenium estuarine profiles were similar to that of the total suspended material. 

Recent work by Doblin et al. (in prep.) found that total particulate concentrations in 1999 

(Fig. 9C and Fig. 9D) were similar to those of Cutter ( 1989b).

Little research is available on the speciation of suspended particulate materia] in 

the Northern Reach. Speciation analysis on the particulate material (Doblin et al., in 

prep.) show that 37 to 50% of the particulate material was organic selenide. 19 to 38% 

was elemental selenium, and 12 to 44% was selenate +• selenite. These speciation data 

are useful in tracing particulate inputs (i.e., elemental selenium is from resuspended 

sediments and riverine inputs, while organic selenide comes from phytopiankton, 

resuspended sediments, and riverine inputs).
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13.4. Blogeochemlcal Cycle of Selenium In the Northern Reach

Figure 10 illustrates the biogeochemical cycle of selenium in the Northern Reach 

of the San Francisco Bay. Dissolved selenium is introduced in the Bay via rivers, 

refineries, and exchange with the open ocean. Transport of selenium in the estuary is due 

to advection and diffusion. During transport, internal transformation of dissolved 

selenium can occur through biotic and abiotic reactions. The abiotic reactions include the 

oxidation of dissolved organic selenide to selenite and the oxidation of dissolved selenite 

to selenate. Biotic reactions include dissolved selenite, selenate, and organic selenide 

uptake by phytopiankton, and incorporation into various biochemical components as 

discussed above.

The sources of particulate selenium to the Northern Reach are particulate 

selenium from the rivers (biogenic and mineral detritus), biogenic particles produced in 

the water column (organic phytopiankton detritus), and sediment resuspension. In situ 

particulate organic selenide can undergo remineralization to dissolved organic selenide or 

it can sink and become part of the sedimentary record. In the sediments, particulate 

selenium can undergo a variety of oxidation-reduction reactions that may cause the 

selenium to become mobile or permanently buried. For example, particulate selenium in 

the bed of the estuary can undergo regeneration to dissolved organic selenide. In this 

way, sediments can become a source of dissolved selenium to the estuary via pore water 

exchange with the overlying water. Any simulation model of the biogeochemical cycle of 

selenium needs to include all of the processes in Fig. 10.
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1.4. MODELING

1.4.1. Estuarine Classification

Estuaries are classified according to their topography and/or salinity structure and 

this affects the choice of models. The topographic classification of an estuary, as defined 

by Pritchard (1952), are drowned river valleys (e.g., Chesapeake Bay), fjords (e.g., Sogne 

Fj’ord, Norway), bar-built estuaries (e.g., Roanoke River), and tectonically-produced 

estuaries (e.g., San Francisco Bay). Estuaries can also be classified as vertically well- 

mixed, partially-mixed, or highly stratified according to their salinity structure.

Conomos (1979) found that the water column in the Northern Reach is typically 

well-mixed due to wind and tides. The well-mixed water column in the Northern Reach 

allowed Selleck (1968) and Cifuentes et al. (1990) to simulate the distribution of salinity 

in the San Francisco Bay using a one layer, advection-dispersion model. Uncles and 

Peterson (1996), on the other hand, used a two-layer, width-averaged, multi-segmented 

model for salinity. Their two-layer model was chosen to simulate the layer-averaged 

salinity and mixing within each level (Uncles and Peterson, 1996). However, all of these 

models have generated salinity profiles that agreed with measured data (Selleck, 1968; 

Cifuentes et al. 1990; Uncles and Peterson, 1996).

Using the continuity equation for water, the movement of a solute in an estuary 

can be described by

3s 3s 3s 3s 3 3s 3 3s 3 3s
T t  = u ^ v ^ + w l l ~ l ^ { K x ~ ^ ) ' l ^ { K x ~di) ' ' d ^ { K ' - l z ~ T  ( L l )

where s is the solute, t is time, u is the tidal velocity, v is the lateral velocity, w is the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

vertical velocity, Kx is the coefficient of longitudinal eddy diffusion, Ky is the coefficient 

of lateral eddy diffusion, Kz is the coefficient of vertical eddy diffusion, and T is other 

processes/reactions (e.g., biological uptake) that may affect the transport of constituent s.

Dimensionless classification parameters can be used to determine which 

parameters in Equation l.l  are important in the transport of a constituent in the Northern 

Reach of the San Francisco Bay. There are many different classification schemes that 

have been developed (e.g., Simmons, 1955; Ippen and Harleman, 1961; Hansen and 

Rattray, l966;Fischer. 1972; Uncles et al., 1983; Prandle, 1985; Jay and Smith, 1988), 

with the main differences being between the type of data needed. For example, Simmons 

(1955) classified estuaries based on the ratio of river flow per tidal cycle to the tidal 

prism, while Fisher (1972) used salinity, velocity measurements, and the breadth of the 

estuary to construct a stratification-circulation diagram that can be used under a wide 

range of conditions.

To determine if the San Francisco Bay can be classified as a well-mixed estuary, 

the classification scheme of Simmons (1955) and the stratification-circulation diagram of 

Fisher (1972) were applied to the San Francisco Bay. Simmons (1955) stated that when 

the flow ratio (ratio of river flow per tidal cycle to the tidal prism) is greater than 1, the 

estuary is stratified, for 0.25 it is partially-mixed, and when the ratio is less than 0 .1 it is 

well-mixed. Conomos (1979) reported a tidal prism of 1.50 X 109 m3 at the Golden Gate, 

but using this number could be misleading since it includes flow from the South Bay. 

Cheng et al. (1993) determined the tidal prism of the San Francisco Bay at various 

locations in the Northern Reach for neap and spring tides. During spring tide, the tidal
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prism ranged from 2.1 X 109 m3 at the Golden Gate to 0.45 X 109 m3 in Suisun Bay. The 

tidal prism was less during neap tide, with the Golden Gate having a tidal prism of 0.93 X 

109 m3 and 0.19 X 109 m3 in Suisun Bay. Due to this large range in the tidal prism, it is 

important to determine if the entire estuary is well-mixed during a complete tidal cycle.

To account for yearly differences in discharge from the Delta, the average Delta discharge 

of 776 m3 s '1 from 1957 to 1999, (Dayflow Interagency Ecological Program, 

http://ieD.water.ca.gov/davflow/l was used in calculating the flow ratio. Flow ratios 

(Table I) indicate the estuary is well-mixed from the Golden Gate to Suisun Bay for 

spring tide. During neap tide, the flow ratio in Suisun Bay is slightly greater than that of 

a well-mixed estuary (0.1), but less than that of a partially-mixed estuary (0.25). Thus, 

the classification scheme by Simmons (1955) indicates that the Northern Reach is a well- 

mixed estuary for most of the year.

Table I
The flow ratio for the San Francisco Bay

Area Row Ratio Tidal Prism (m3)
Golden Gate
Spring 0.02 2.10 x IO9
Neap 0.04 0.93 x IO9
Central Bay
Spring 0.05 0.75 x IO9
Neap 0.09 0.40 x IO9
San Pablo Bay
Spring 0.07 0.50 x 109
Neap 0.10 0.35 x IO9
Suisun Bay
Spring 0.08 0.45 x IO9
Neap 0.18 0.19 x 109
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An estuary stratification-circulation diagram was used to further confirm if the 

San Francisco Bay could be modeled as a well-mixed estuary. Fischer (1972) calculated 

stratification using the estuarine Richardson number, which is defined as:

Ri , = — * ^ r  “ -2>P  b u t

where b is the estuary width, p is the water density, Uf is the velocity of fresh water flow, 

u, is the root mean square tidal current, and g is gravitational acceleration. Using this 

equation, when Rie is greater than 0.8 the estuary is highly stratified and for a Rje less than 

0.08, the estuary is well-mixed; anything in-between is classified as a partially-mixed 

estuary. Using flow data from Peterson and Conomos (1975) and Peterson et al. (1978), 

the stratification-circulation diagram (Fig. 11) indicates that the Rjc is less than 0.08 in the 

Northern Reach of the San Francisco Bay. Therefore, the stratification-circulation 

diagram also classifies the Northern Reach as a well-mixed estuary. Therefore Equation

1.1 can be reduced to

ds ds d ds
H t ~  ( U )

and the San Francisco Bay can be modeled as a one-dimensional estuary.

1.4.2. Biogeochemlcal Model Description

The Center for Coastal and Marine Sciences at the Plymouth Marine Laboratory, 

United Kingdom, developed a biogeochemical model, ECoS 3, that simulates the 

transport of a solute in the well-mixed Tamar Estuary, England. In the Tamar Estuary,
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ECoS 3 simulates phytoplankton growth, sediment transport, and biological uptake of 

nutrients. ECoS 3 was chosen over other estuarine models because it has been proven to 

work an estuary that has hydrodynamics similar to the Northern Reach, it can simulate 

biological productivity, total suspended material, salinity, and nutrients, and it can be 

easily adapted to include dissolved and particulate selenium reactions. Thus, using this 

model only requires adjusting ECoS 3 to the San Francisco Bay and coding the processes 

of selenium transport and transformation. The models of Uncles and Peterson (1996), 

McDonald and Cheng (1997) or Cole and Cloem (1987), even though designed for the 

San Francisco Bay, were not chosen since they only handle one process in the estuary 

(i.e., salinity transport, sediment movement, phytoplankton growth) instead of the 

multiple interactions of a solute in the Bay.

In ECoS 3, the transport and transformation of a solute is calculated using a step

wise approach. First, the changes due to in situ processes, T, are calculated and then the 

changes due to transport are calculated. ECoS solves the changes in the concentration of 

a solute due to T in Equation 1.3 as:

Cn ~ Cn =  S c «&.n(cf  ...C?) ~  c£ I. gnJ( c f  (1.4)
f t

where for the time step, At, the initial concentration of nth species, c*„, and the final 

concentration without being transported, cA„ , are solved, with the solute concentration 

being updated continuously. The transport of the solute is then calculated using the 

concentration of the solute at the last time step. Therefore, for each species the transport 

and any of the T terms are solved as:
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Ax Ax
(1-5)

where c is solved for the final concentration, and becomes the initial concentration for the 

next time step (Harris and Gorley, 1998).

In ECoS 3, the estuary can be modeled as one complete box or subdivided into a 

series of multiple boxes. By using multiple boxes, the concentration of the solute in a 

box is solved and used to predict the concentration in the next box as described in 

Equation 1.4 and 1.5. For each box, a solute (e.g., selenium) undergoes the same T 

processes as in the previous box. Uncles and Peterson (1996) divided the Northern Reach 

into 33 boxes and found that the box model approach was able to simulate salinity in the 

Bay with reasonable agreement between their simulations and field data. Therefore the 

same 33 boxes of Uncles and Peterson (1996) were used in ECoS 3.

1.4.3. Modeling Morphology and Hydrology

The shape of the estuary defines the flow of water within the estuary. To produce 

an accurate estuarine shape, depths at fixed points within the estuary are used to 

determine its bathymetry. The area of the each estuarine segment is determined from a 

quadratic function where:

where A is the area of each segment, a<> to &2 are ratios of the cross-sectional area and 

water depth at suitable points along the estuary, and x is the segment length; the total

A = a0 + a,.r + azx z ( 1-6)
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estuarine area is the sum of each segment area.

During high flow, the Sacramento-San Joaquin discharge accounts for 90% of the 

freshwater entering the Bay. As discussed above (in Section 1.3.2), the Sacramento River 

largely defines the input of fresh water into the Bay from the month of June to November 

(low flow months). Therefore, the Sacramento River at Rio Vista is the freshwater end 

member. The Pacific Ocean at Golden Gate is the seaward end member. The river end 

member is defined as a closed system (inputs only), while the Pacific Ocean is defined as 

an open end member where exchange occurs. The San Joaquin River is treated as a point 

source into a specific box since it only has appreciable flow during the winter months.

Discharge from the Sacramento-San Joaquin Rivers are classified into three 

categories, wet, dry or intermediate according to their combined discharge into the Delta. 

When the summer discharge is greater than 400 m3 s it is a wet year, and a dry year is 

when the mean summer flow is less than 200 m3 s but greater than 120 m5 s 

(Peterson et al., 1985). The discharge from each river varies significantly between a wet, 

dry and intermediate year (Fig. 12). During a wet year the discharge from the Sacramento 

River can be 1000 m3 s'1 greater than that during an intermediate year (Fig. 12A). 

Furthermore, during a dry year the San Joaquin can have no discharge for 5 to 6 months 

(Fig. 12B). Due to the variability in riverine discharge, flow from each river is obtained 

from the Interagency Ecological Program (http://iep.water.ca.gov/davflow/). The 

Interagency Ecological Program continuously monitors and quality checks the discharge 

data to ensure accuracy.

The rest of the Northern Reach water budget includes direct rainfall and
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evaporation measurements. Monthly averaged precipitation rates since 1982 can be 

obtained from the California Weather Database Station Davis CIMIS # 6 

(http://www.ipm.ucdavis.edu/calludt.cgi/WXSTATTONDATA?STN=DA VIS .A). The 

precipitation between wet and dry years does not vary significantly (Fig. 13) compared to 

river inputs, and thus the average precipitation from 1982 to present is used for 

precipitation inputs. Since few researchers have measured evaporation rates in the Bay, 

the rates that Uncles and Peterson (1996) calculated are used. A minimum evaporation of 

0.95 X IO'8 m s '1 occurs during December, while in July the maximum evaporation is 6.2 

X IO-8 m s '1. For the model, daily evaporation rates are linearly interpolated between the 

minimum and maximum of Uncles and Peterson (1996).

1.4.4. Tides

In the Northern Reach, the diurnal component of the tide in the San Francisco Bay 

is strong, and thus there is a large difference between successive low-water and high- 

water levels (Uncles and Peterson, 1996). The spring-neap variation in the Bay can be 

very pronounced, with spring tide being 1.55 times the mean amplitude at the Golden 

Gate, and neap tide being 0.58 times (Uncles and Peterson, 1996). Additionally, Walters 

and Gartner (1985) found that water circulation in the Bay is strongly driven by Pacific 

tides propagating through the Golden Gate. Tidal variation is simulated using a six 

component tidal model defined as

TID E  — A/ 2  f  *̂ 2 ■*" ^ 4  +  Mg (1.7)

where each component is defined as
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rc(i) = TA(i) * COS«TP(i) -7F(t» **7180) (1.8)

where TQ is the tidal constituent (e.g., Mi,Si, Ki, etc.), TA is the tidal amplitude (m), TP 

is the tidal phase (degrees), TF is the tidal frequency (degrees), 7t/l80 converts the angles 

of the tidal frequency and phase to radians, and COS is the cosine function.

According to Cheng et al. (1993) and Uncles and Peterson (1996), the main 

components of tides in the Bay are the Mi (0.58 m), Ki (0.37 m) and Oi (0.23 m) 

constituents. Using the method of least squares harmonic analysis, tidal data from 

January 1999 produced amplitudes similar to those found by Cheng et al. (1993) and 

Uncles and Peterson (1996). Since Cheng et al. (1993) and Uncles and Peterson (1996) 

components were determined over a longer time period (i.e., 20 yrs), their amplitudes, 

phases, and frequencies are used.

1.4.5. Conservative Tracer

A conservative tracer is a constituent that is transported through an estuary 

without any losses or gains. Salinity is used as a conservative tracer since it does not 

undergo any biological or chemical reactions in an estuary (Dyer, 1997). For a 

conservative solute, the concentration gradient in the estuary represents a balance of 

advection and dispersion. The transport of a conservative solute is described by

( , - 9 )at ox dx

where U is the water velocity, C is the conservative tracer, and Kw is the dispersion 

coefficient along the axis (x) of the estuary. A negative U indicates that the water is
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going out of the estuary, while a positive U indicates that the water is coming into the 

estuary. Dyer (1997) defines the water velocity as the total freshwater input above a point 

in the estuary divided by the cross-sectional area of the estuary, and the dispersion 

coefficient as

Q * S
’  d s ~  ( l ' 1 0 '

A*( & '

where Q is the total freshwater input (m3/s), A is the cross-sectional area (m2), S is 

salinity, and dS/dx is the axial salinity gradient (m l). The input of fresh water to the 

estuary, Q, is defined by the discharge from the Sacramento River, the San Joaquin River, 

precipitation, and evaporation. The initial salinity gradient at time zero is specified so 

that Equation 1.10 can be solved for the first day, otherwise a mathematical error occurs 

(cannot divide by zero).

1.4.6. Suspended Material

Total suspended material (TSM) in an estuary consists of permanently suspended 

material, resuspended sediment from the bed of the estuary, and particles produced in situ 

(e.g., phytoplankton). In the San Francisco Bay, the TSM concentration has an estuarine 

turbidity maximum (ETM) that can be formed through gravitational circulation or tidal 

asymmetry of velocity (Jay and Musiak, 1994; Schoellhamer, 2001). The ETM usually 

forms in Suisun Bay at a surface salinity between I and 6  (Arthur and Ball, 1979; 

Schoellhamer, 2001). TSM is defined as
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TSM = PSM + BEPS + B (LI 1)

where PSM is the permanently suspended material (mg L*1), BEPS is the sediment 

resuspended from the bed of the estuary (mg L*1), and B is the phytoplankton biomass 

(mg L'1). The inputs of PSM and BEPS and their transport are discussed below followed 

by the model description on how phytoplankton is produced and transported in the 

estuary (Section 1.4.7).

Permanently suspended material is sediment that enters the Bay through river 

discharge and does not sink. The velocity and dispersion of PSM can therefore be treated 

as a conservative solute (Harris et al., 1984) and thus the change in PSM with time 

becomes:

( 1 1 2 )

where U and Kw are defined above (Equation 1.9) and PSMnVer is the riverine input of 

permanently suspended material.

Dinehart and Schoellhamer (1999) found that the Sacramento River discharges 

seven times more suspended sediment to the Bay than other tributaries to the Bay, 

including the San Joaquin River. Therefore, the primary input of PSM is through the 

Sacramento and the sea water end members. Harris et al. (1984) define the riverine end 

member input of PSM as

P S M ^ ^ a  + ̂ Q j )  (I.I3)

where PSMnver is the sediment load (g d '1), a is the concentration of bed-exchangeable 

sediment in the river water (g d '1), b is the concentration of suspended sediment (g L'1) , c
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is an adjustable parameter, and Qsac is the discharge from the Sacramento River (L d '1). 

The seawater end member of PSM set to a constant value as in Harris et al. (1984).

Modeling BEPS is often difficult due to little data on the concentration of 

sediment in the water column due to resuspension and the amount of sediment available 

for resuspension. The transfer of sediment between the bed of the estuary and the water 

column occurs during the tidal cycle (e.g., erosion during flood tide). Uncles (1981) 

found that a tidal asymmetry causes an up-estuary movement of particulate material. This 

up-estuary movement is balanced by river discharge. A resulting estuary turbidity 

maximum in the Northern Reach is a function of tides and salinity (Schoellhamer, 2001). 

Therefore, BEPS is

dBEPS „  dBEPS . „ d2BEPS d „  BE.nf.
d t  ~  BEPS BEPS 0 ^ 2  J  ( 1 - 1 4 )

where U b e p s  is the transport velocity of BEPS (m d 1), K b e p s  is the dispersion of BEPS 

(m2 d 1), z is depth, and Vs is the sinking velocity. The transport velocity of BEPS 

( U b e p s  ) is defined as

U  beps = d * U  — e* TIDE  *  S  (1.15)

where d  is a constant that determines the response time of the suspended particles to 

changes in tides and water flow, e is a constant that scales tidal range and salinity, TIDE 

is given in Equation 1.7, U is the water velocity (m d*‘), and S is the salinity. Equation 

1.14 causes a maximum BEPS to form by allowing the net seaward velocity to increase in 

response to the increase in net water flow (Harris and Gorley, 1998).
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The dispersion of BEPS is described by Harris and Gorley (1998) as

KBEPS = £ * U  + y/*TID E*S  (u 6 )

where K b e p s  is the dispersion coefficient (m2 d''), and e and if/ are constants (m). A 

BEPS maximum will occur when U b e p s  equals zero (Harris and Gorely, 1998).

Information about basic processes governing erosion and deposition are limited 

due to the extreme difficulty in obtaining field measurements (McDonald and Cheng, 

1997). To further complicate the matter, the Bay is periodically dredged in order to 

maintain navigational channels (Shoellhamer, 2002). To account for limited data on 

these processes, it is assumed that the total flux of sediment from the estuarine bed to the 

water column is balanced by a return (deposition) as in the Tamar Estuary (Harris et al., 

1984). The sinking of particles, Vs, is set to a constant rate of 86.4 m d' 1 based on 

measurements by McDonald and Cheng (1997). Since little is known about the sea water 

or riverine end member concentration of BEPS, the end members were set to those values 

used in other well-mixed estuaries. For the sea water end member, BEPS was set to zero, 

and the riverine end member concentration of BEPS was set to a constant value of 0.004 

g L' 1 (Harris et al, 1984).

1.4.7. Phytoplankton Dynamics

Modeling phytoplankton biomass is difficult due to seasonal variations in 

community composition and productivity within an estuary (Cloem et al.. 1985). In a 

well-mixed estuary, phytoplankton biomass is modeled as
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where B is the phytoplankton biomass ( g chi L '1), is the net biomass-specific growth 

rate of phytoplankton ( d 1), G ( d 1) is loss rate due to zooplankton grazing (Koseff et al., 

1993; Lucas et al., 1998), Pb (d ‘)is a loss due to benthic grazing (Koseff et al., 1993; 

Lucas et al., 1998), z is the depth (m), ws is the sinking rate, and R is the loss of 

phytoplankton due to respiration, and Bnver is the riverine input of phytoplankton.

Sinking of phytoplankton tends to be small (0.5 m d' 1 to 0.9 m d '1) and is set to a constant 

value based on literature values of Cloem (1991), Kosseff et al., (1993), and Lucas et al. 

(1998) for the San Francisco Bay (0.5 m d '1).

The net biomass-specific growth rate, u„, is 

P
u = --------------------  (1.18)

C : Chlorophyll

where P is the biomass specific rate of photosynthesis (mg C mg c h i1 d 1), and 

C:Chlorophyll is the carbon to chlorophyll-a ratio. This ratio is 51 mg C (mg chi) ' 1 based 

on measurements by Cloem and Alpine (1991) in the San Francisco Bay.

The biomass specific rate of photosynthesis, (B in Equation 1.17) can be a 

function of nutrients, light availability, respiration losses, and grazing. Past research by 

Cole and Cloem (1984,1987), Peterson et al. (1987), and Alpine and Cloem (1988) have 

shown that in the San Francisco Bay nutrient concentrations are greater than those needed 

to limit phytoplankton growth. High turbidity in the estuary makes growth a function of 

light availability (Cole and Cloem, 1984; Peterson and Festa, 1984), and phytoplankton 

growth is based on the photosynthesis-irradiance equation of Platt and Jassby (1976);
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P = Pn tanh(or/) (1-19)

where P is the biomass-specific rate of photosynthesis (see above), P m is the maximum

active radiation (PAR, Einst. m' 2 d '1). In the Northern Reach, Pm varies from 24 to 219 

mg C (mg chi) ' 1 d' 1 (Cloem and Alpine, 1991), with alpha value of 0.002 to 0.009 Einst. 

m2 d' 1 (Peterson and Festa, 1984; Lucas et al., 1998). These values are the ranges of Pm 

and a  used in the m odel.

Photosynthetically active radiation (I in Equation 1.19) is absorbed and scattered 

by dissolved and suspended matter in the water (Parsons et al., 1984). The irradiance of 

light at depth, z, is expressed as

where X is the wavelength of light, k is the attenuation coefficient of light within the 

water column (m 1), and z is the depth in meters (Miller and Zepp, 1979). In a well- 

mixed water column, it is assumed that biomass is within the photic zone, and thus every 

molecule in the water column is exposed to an equal amount of sunlight during a given 

period (Miller and Zepp, 1979). In a well-mixed estuary Equation 1.20 then becomes

where I jjn  the model is defined as the photosynthetically active radiation (PAR, Einst.

rate of photosynthesis at optimal light intensity (mg C (mgchl)*1 d '1), a  is the initial slope 

of the light-saturation curve divided by Pm (m2 d l Einst.'1) , and I is the photosynthetically

H z ,  A)  =  I xe ' b ( 1.20)

PAR is calculated using an empirical equation that Jim Cloem (personal
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communication) developed using historical sunlight data from the California Weather 

Database at Davis

(http://www.ipm.ucdavis.edu/calludt.cgi/WXSTATIOND ATA?STN=D A VIS. A):

i JulianDav * K
IX = 13.8237 + 47.608 * sin2 (------- — r ----) (1.22)

365

Cloem (personal communication) found that the linear correlation coefficient, r, between 

the observed PAR and the calculated PAR using Equation 1.22 was 0.992.

The attenuation coefficient, (k in Equation 1.21) is defined by Parsons et al.

(1984) as

k  =  k w + kd +  k p + ks * TSM  (1.23)

where kw is the scattering of light due to water (m 1), k<i is due to dissolved matter (m 1), 

kp is due to phytoplankton (m 1), and ks is due to non-living suspended material (L g' 1 

m'1). The attenuation of light due to phytoplankton is less than 5% of the total light 

attenuation in the San Francisco Bay (Cole and Cloem, 1987), and thus kb is set to zero. 

The sum of kw and k<i is set to 0 .1 m' 1 based on calculations by Miller and Zepp (1979). In 

fresh water systems kscan be as high as 500 L g' 1 m‘‘ (Miller and Zepp, 1979) if the 

photic depth is less than 0.1 m. In the San Francisco Bay, Cloem and Alpine (1991) 

reported a photic depth between 0.5 and 2 m. Therefore, ks may need to be adjusted 

during calibration to represent the conditions in the San Francisco Bay. The above 

equations (1.19 through 1.23) are needed to simulate u„ for Equation 1.18.

Phytoplankton mortality in the San Francisco Bay is due to respiration losses and 

grazing effects (benthic and zooplankton). Mortality due to respiration (R in Equation
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1.17) can be up to 10% of Pm (Cole and Cloem, 1984) and is held at a constant value 

(10% of Pm) in the model.

Grazing in the San Francisco Bay includes zoopiankton grazing and benthic 

grazing. The zoopiankton grazing rate (G in Equation 1.17) is simulated by the model 

using mean zoopiankton biomass and a modified Ivlev function that predicts the ingestion 

of phytoplankton per animal (Cloem et al., 1985). The later is a function of temperature 

(Conover, 1956; Ikeda, 1974; Vidal, 1980) and zoopiankton weight (Paffenhoefer, 1971, 

Nival and Nival, 1976; Vidal, 1980). Parson and LeBrasseur (1970) define daily 

ingestion of phytoplankton by zoopiankton, F, (mg C animal'1) as

F = 9.5.rl0~* *IV08 *e0069*(7'-10> *(i _ e-o°'*B) (1.24)

with T being temperature (°C), W is the zoopiankton mass Cug C anim al1), and B is the 

biomass of phytoplankton in units of carbon. The weight of zoopiankton varies among 

species and ranges from 7 to 63 pg C animal' 1 (Hutchinson, 1981). The temperature of 

the water is the estuarine averaged temperature from the USGS monitoring program 

(http://sfbav.wr.usgs.gov/access/wqdata/webbib.htmn. The phytoplankton biomass is 

converted to units of carbon with a carbon to chlorophyll-a ratio. The total daily 

zoopiankton ingestion. I, (mg C m'3) is calculated using

/  = F * Z  (1.25)

where Z is the average zoopiankton abundance (m'3). Zoopiankton biomass in the San 

Francisco Bay varies seasonally, but species composition is similar for each season in 

1978 to 1981 (Ambler et al., 1985). Zoopiankton communities within the San Francisco 

Bay are comprised of Acartia claus., Acartia califomiensis, Oithona davisae,
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harpacticoid copepods, Eurytemora affinis, Sinocalanus doerrii, cyclopoid copepods, 

Bosmina sp., Daphnia pulex, Brachionus sp., and bivalve veligers (Ambler et al., 1985). 

Mean zoopiankton abundance for each season was obtained from Ambler et al. (1985) 

and Purkerson et al. (accepted) with 10 animal L’1 during the winter to 850 animal L' 1 

during the spring/summer. Linear interpolation to estimate biomass between these 

extremes was used.

Using the above equation (1.25), the specific loss of phytoplankton per day by 

zoopiankton grazing (G in Equation 1.17) is simulated from Cloem et al. (1985)

g  = ~ ln-f ~ -) (1-26)D

with B being the phytoplankton biomass in units of carbon.

Benthic grazing of phytoplankton (Pb in Equation 1.17) is largely due to the 

presence of the benthic clam, Potomocorbula amurensis. Prior to the introduction of P. 

amurensis, the main control on phytoplankton populations was zoopiankton grazing 

(Cloem et al., 1985). In 1987, P. amurensis colonized the Bay, causing a significant 

decrease in phytoplankton biomass (Cloem and Alpine, 1992). The introduction of P. 

amurensis resulted in a decrease in the average summer chlorophyll-a concentration from 

20 pg chi L*1 to less than 2 pg chi L"1 (Cloem and Alpine, 1992). Based on 

measurements by Wemer and Hollibaugh (1993), P. amurensis has the potential to graze 

phytoplankton at rates greater than the specific growth rate of phytoplankton. Since the 

San Francisco Bay is well-mixed, potentially all the phytoplankton are available to the 

benthos (Wemer and Hollibaugh, 1993). Food availability to P. amurensis is affected by
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water movement and food depletion within the benthic boundary layer and is still under 

investigation (Frechette and Bourget, I985a,b; Frechette et al., 1989). Samplings in the 

Northern Reach indicate that a large number of benthic grazers are located in Suisun Bay 

(Thompson, 2000); therefore, grazing rates were increased by 25% for this region. 

Although few data on benthic grazing rates for the Northern Reach are available, the rates 

were compared to those in the South Bay (Cloem, 1982), with Kosseff et al., (1993), and 

Lucas et al (1998).

The concentration of phytoplankton added to the estuary via the Sacramento River 

is defined as

98
- ^ L = B m„*Q  (1.27)

where B is the riverine concentration of phytoplankton (pg chi L'1), with B varying with 

time, and Q is the freshwater discharge from theh river. The same equation is used to 

define the input of phytoplankton from the San Joaquin River. Due to limited data 

availability, chlorophyll-a concentrations at the sea water end member of phytoplankton 

are held constant based on measurements by Cutter and Cutter (in prep.) at the Golden 

Gate (2.3 ± 1.0 pg chi L 1).

1.4.8. Dissolved Selenium Speciatfon

Dissolved selenium is introduced to the estuary through the Sacramento River, the 

San Joaquin River, refinery effluents, and sediment pore water fluxes. Total dissolved 

selenium is defined as the sum of selenite, selenate and organic selenide. As discussed
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above (Section 1.3.2.), selenite, selenate and organic selenide profiles from the San 

Francisco Bay suggest that there are production and removal of each of these species in 

the Bay. Therefore, the time dependent behavior of any dissolved selenium species is 

given by:

dSe dSe 3 '.t (1.28)
at ox dx~

where Sei is the selenium species of interest.

The input of selenium from the Sacramento River has remained fairly constant 

over the last 10 years (Cutter and Cutter, in prep.) and shows minor variability with time 

(Cutter and San Diego-McGlone, 1990). Thus, the concentration of selenite, selenate, 

and organic selenium were plotted against Julian days and a sine wave was fit to the data. 

The following equation is used to fit the selenium speciation in the Sacramento River 

and the San Joaquin Riven

2*7C*T
y  — y 0 + a * s in ( - -----------+  c) (1.29)

b

where yD is the initial selenium concentration at June 1, 1986, a, b, and c are fitting 

constants, and T is the time in Julian days. The constants for a, b, and c for each 

selenium species are found in Table 2.
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Table 2
Constants for Equation 1.29 for the Sacramento and San Joaquin River

a b c y0 r
Sacramento River

Selenite 0.03 75 0.41 0 .1 1 0.48
Selenate 0.29 1556 3.77 0.60 0.76
Organic 0.06 312 1.32 0.35 0.36

Selenide
San Joaquin River 

Selenite 0.15 125 4.87 0.24 0.62
Selenate 1.69 622 5.30 5.49 0.57
Organic 1.42 76 5.49 2.77 0.69
Selenide

Speciation data used in Equation 1.29 for the San Joaquin River were taken from 

Vemalis, which is approximately 60 km from where the San Joaquin River enters the 

Delta. During the transport of selenium through the Delta biogeochemical processes 

could cause removal/production of selenium. Cruise samples taken in the San Joaquin 

River (Fall, 1998, Summer 2000; Cutter, unpublished data) indicate that the concentration 

of selenium at Vemalis is reduced by 60 to 80% as it is being transported from San 

Joaquin River through the Delta and into the estuary at Antioch. Based on these findings, 

the predicted selenium concentrations at Vemalis from Equation 1.29 for the San Joaquin 

River is reduced in order to represent the actual input of selenium at Antioch (referred to 

as "Delta removal effect" in the following Chapters), using the above percentages to 

account for any removal of selenium in the Delta.

As stated earlier, refineries are a source of selenium in the Northern Reach. Total 

selenium input to the Northern Reach from each refinery is monitored due to
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environmental regulations. Output fluxes of total selenium were obtained from each 

refinery for the years of interests (San Francisco Bay Regional Water Quality Control 

Board, personal communication). Cutter and Cutter (in prep.) and Cutter and San Diego- 

McGlone (1990) determined speciation data from these refinery effluents. Refinery inputs 

of dissolved selenium are treated as point sources in the model and the fluxes are held 

constant with time for each.

Exchange with the open ocean can also be a source of selenium to the estuary. 

Observations by Cutter and Bruland (1984) show that total selenium in the Pacific Ocean 

is approximately 1 nmol L'1, and of this 80% is in the form of organic selenide. Based on 

their findings, the sea water end member concentration were specified and held constant 

over time.

The production and removal terms. T (Equation 1.28), that affect selenium include 

biological uptake and oxidation/reduction reactions (Fig. 10). Phytoplankton are able 

to influence the speciation of dissolved and particulate selenium by selectively taking up 

dissolved selenium species and producing particulate organic selenide. Figure 14 

shows the biotic and abiotic reactions that occur in oxygenated waters. The rate constants 

k4, ks.and k6 are functions of biological activity, while the rate constants k2 and k3 are a 

function of oxygen concentrations (Fig. 14).
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k-> k3
Particulate Se(-II) —» Dissolved Org. Se (-II) + CK —» Se*4 + Q> —» Se+6

Fig. 14. Possible reaction pathways for selenium in oxic seawater and associated first 
order rate constants.

The time dependency of selenate, selenite, and organic selenide concentrations (T 

in Equation 1.28) are described by:

dSe<yi)
dt

dSe(FV)

= k3[Se(IV)]-k5[SeI{yi))

a
d D S e - l l

a

=  k2[dDSe(-II)] -  k3[SeOV)}  -  k^Se(IV)

(1.30)

(1-31)

=  k x[PSe{-Il))  -  k2[D Se{- I I ) ]  -  k6[DSe(-II)]  (1.32)

The transformation of particulate selenide to dissolved organic selenide, ki, is 

biologically controlled and probably of a complex order, but regeneration experiments 

(Cutter, 1982) show that the reaction is fast and pseudo first order (Cutter and Bruland, 

1984). The oxidation of dissolved organic selenide to selenite, k ,̂ and selenite to 

selenate, k3, are also pseudo first order since dissolved oxygen concentrations are high 

relative to dissolved organic selenide and selenite concentrations (Cutter and Bruland,
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1984; Cutter, 1992). The oxidation rate constants for selenium (k2 and ^3) have been 

previously determined (Table 3).

As noted in the preceding discussion, the rate constant k», k$, and k6 are controlled 

by phytoplankton, but Michaelis-Menton uptake parameters for selenite, selenate, and 

organic selenide in marine phytoplankton are limited and have some problems. For 

selenite, Baines and Fisher (2001) determined a half-saturation value of 0.2 nmol L' 1 for 

the diatom, Thalassiorsira pseudonana. Vandermeulen and Foda (1988) found a selenite 

half-saturation of 15 nmol L‘l for the diatom Thalassiorsira nordenskoldii. For 

freshwater phytoplankton (a chlorophyte, Ankistrodesmus sp., a cyanophyte 

Merismopedia sp., and algae Anabaena flos-aquae. Chlamydomonas reinhardtii, and 

Cyclotella meneghiani), Riedel et al. (1991) observed linear uptake of selenite for 

concentrations of 12 to 633 nmol L'1. These studies indicate that there can be a large 

difference in selenite uptake by phytoplankton that is dependent on the species present.

In the San Francisco Bay. the phytoplankton community is mostly dominated by diatoms 

(Cloem et al., 1985, Lehman, 2000). In the winter, phytoplankton biomass in the upper 

estuary is comprised of freshwater diatoms (Melosira spp., Fragilaria crotonensis. 

Amphora sp., Skeletonema costatum and Thalasiosira rotula; Cloem et al., 1985).

Marine centric diatoms (Thalassiosira spp. and Coscinodiscus spp.; Cloem et al 1985; 

Lehman, 2000) dominate the spring blooms. Due to the large range in phytoplankton 

uptake rates and the fact that the Bay is dominated by fresh water diatoms, the first order 

uptake rate constants for selenite of Riedel et al. (1996) will be used instead of Michaelis- 

Menton kinetics (Table 3). This will also be discussed later.
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Table 3
First order rate constants for selenium

Constant Process Value Unit Reference

k, P Se(-II) —»D Se (-11) 1.3 x 10s -5  x 10- d-‘ Cutter (1991)

k’ D Se(-ll) -»D Se (HO 1.0 x 10J - 81.0 d-‘ Cutter (1991)

k3 D Se(IV) —»D Se (VI) 2.4 x 10 6 d-' Cutter & Bruland (1984)

k. D Se(IV) P Se (-H) 2.02-2.41 pmol (g c h i)1 hr 1 Riedel etal. (1996)

k? D Se(VI) -> P Se (-11) 0.43-0.58 (imol (g chi)-1 hr 1 Riedel etal. (1996)

k* D Se(-II) -► P Se (-11) 0 3  k, pmol (g chi)'1 h r 1 Baines et al. (2001)
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For selenate, Vandermeulen and Foda (1988) found that the uptake rate by marine 

phytopiankton is linear, but minimal until concentrations are in the millimolar range. 

Riedel et al. (1996) found freshwater phytopiankton take up 21% less selenate than 

selenite, but that it is also linear for concentrations ranging from 12 to 633 nmol L'1. The 

above results suggest selenate uptake cannot be defined by Michaelis-Menton kinetics. 

Therefore, the selenate uptake rate constants of Riedel et al. (1996) will be used (Table 

3).

Like inorganic selenium uptake, the uptake of organic selenide is still under 

investigation. Baines et al. (2001) found that the uptake of organic selenide is complex 

and is about half the rate of selenite uptake. Based on this finding the uptake rate 

constant of organic selenide was set at half of selenite value in the model. Clearly, more 

rate measurements are needed for estuarine phytopiankton species; this is discussed in 

future studies in Chapter V.

Pore water exchange can be a significant source or sink of dissolved selenium to 

the estuary (see above discussion and Chapter H). Pore water exchange is modeled as

dSC^ - "  = A * J Se (1.33)
at

where A is the area (m2) of the sediment and is the diffusive flux (nmol m'2 yr*1). The 

pore water fluxes from Chapter II indicate that dissolved selenite + selenate are fluxing 

into the sediments and dissolved organic selenide is fluxing out of the sediments. Mass 

balance calculations show that there may have been a change in pore water fluxes in the 

past 10 years. To account for this, diffusive fluxes are calculated based on the overlying
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water concentration. The axial gradient of pore water concentrations for selenite + 

selenate and organic selenide are specified based on the measurements in Chapter II.

1.4.9. Particulate Selenium Speciation

Particulate selenium in the water column is derived from sediment resuspension, 

sediment loading from the Sacramento River, and in situ production (e.g., phytopiankton 

uptake of selenium). Total particulate selenium is defined as the sum of particulate 

elemental selenium, selenite + selenate, and organic selenide.

Elemental selenium can only be generated through dissimilatory selenite + 

selenate degradation in anoxic systems (Oremland et al., 1989). The water column in the 

San Francisco Bay is oxic, and therefore the presence of particulate elemental selenium 

must be through either sediment resuspension or riverine inputs. The input of elemental 

selenium to the water column is described by:

31 " J £ °  3i -----------  31 (

where PSeo is the particulate elemental concentration (nmol L 1) in the water column,

SeQ. b e d  i s  the elemental selenium concentration on the bed of the estuary (nmol g'1), 

Se0.nver is the riverine concentration of selenium (nmol g '1), PSM is defined by Equation 

1.12 and BEPS is defined by Equation 1.14.

The particulate selenite + selenate concentrations are represented by

dpSeiy+v.' _ s  * dBEPS * dPSM (135)
^  ^  IV+Vl .SED ^  IV+Vl.nver ^  1 U - J J J

where PSeiv+vi is the particulate selenite + selenate concentration in the water column
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(nmol L '1), Serv+vi. s e d  is the particulate selenite + selenate concentration in the sediments 

(nmol g ' 1) ,  S e OJiver is the riverine concentration of selenium (nmol g ' 1) ,  and the other

variables have been previously described, and T is adsorption/desorption.

Adsorption of selenite and selenate onto minerals have been extensively studied in 

soils (Balistrieri and Chao, 1986; Ahlrichs and Hossner, 1987; Bar-Yosef and Meek,

1987; Neal et al., 1987; Zhang and Sparks, 1990). Selenate adsorption is non-specific 

and is an outer sphere complex that can be represented by Fig. 15 (Zhang and Sparks, 

1990).

b
Fig. 15. The adsorption/desorption of selenate onto particles, where XOH is the 
neutral surface site.

However, ligand exchange is responsible for selenite adsorption (Balistrieri and Chao, 

1987; Zhang and Sparks, 1990) and can be expressed by Fig. 16. In both figures, the rate 

constant for adsorption is a and rate constant for desorption is b.

b
Fig. 16. The adsorption/desorption of selenite onto particles, where XOH is the 
ligand.

Se042' + XOH + H+ ^  N X0H 2+-Se042'

SeOs2 + XOH+H* v  ^  XSe03 + H20
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Neal et al. (1987) found that when the ionic strength in saturated sediments was 

increased from 0.05 M to 0.1 M the change in selenite adsorption was minimal.

However, increasing the pH or increasing the concentration of phosphate in the soils 

resulted in a decrease in selenite adsorption by one-half (Neal et al., 1987). Ahlrichs and 

Hossner (1987) and Balistrieri and Chao (1987) found similar results when increasing pH 

on low ionic strength solutions (0. IM). Selenite adsorption decreases with pH until it is 

undetectable at a pH of 8.3 (Zhang and Sparks, 1990). In fresh water, Zhang and Sparks 

(1990) suggests that selenite adsorption may be complex, but occurs rapidly (i.e.. within 

60 seconds).

For selenate, in sediments the primary factor controlling the rate of adsorption is 

pH (Ahlrichs and Hossner, 1987; Balistrieri and Chao. 1987; Zhang and Sparks, 1990).

At a pH of 6 . the adsorption of selenate is non-detectable (Balistrieri and Chao, 1987; 

Zhang and Sparks, 1990). These findings also suggest that the adsorption of selenate is 

weaker than that of selenite. Based on these findings, selenate adsorption in an estuary 

would be minimal due to the high pH. Thus, it is assumed that any adsorption only 

involves selenite.

All of the available studies of selenite adsorption have only been in low ionic 

strength waters, thus making it difficult to apply the above findings to an estuarine 

environment. In an estuary, a change in pH, salinity, and turbidity often affects the 

adsorption of a metal to particles (Salomon and Forstner, 1984). For cadmium (Bale, 

1987), nickel and zinc (Liu et al., 1998), and copper and manganese (Millward and 

Moore, 1982), studies found that even though adsorption decreased with pH, the effects
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of salinity were greater. Freundlich and Langmuir equations cannot be used to model 

metal adsorption due to salinity effects (Chen and Lin, 2001). However, the adsorption of 

selenite onto particles can be characterized by the distribution coefficient (Kd)

desorption in Fig. 16 (Nyffeler et al., 1984). For fresh water, Lemly (1985) determined a

(1990) indicate that at a pH of 8.3, adsorption of selenite is minimal, therefore Kj in 

seawater is zero. Based on the adsorption behavior of other metals in an estuary and 

reported IQ values for selenite, the decrease in K<i for selenite with increasing salinity is 

modeled as

where ko is the distribution coefficient in fresh water (L kg '), and E is the power that 

dictates how the distribution coefficient declines with increasing salinity (Bale, 1987). 

Equation 1.37 was fitted to the literature data described above to obtain the coefficients ko 

and E.

It is often difficult to measure the rate constants a and b in Fig. 16, but they can be 

determined from the IQ value. Nyffeler et al. (1984) found that reaction rate constant can 

be quantified as

(1.36)

where a ’ is the intrinsic adsorption rate constant (L g' 1 d*1), and b is rate constant (d l) of

fresh water partition coefficient of 0.3 L g '1, while Zhang and Moore ( 1996a, 1996b) 

determined a IQ that ranged from 0.5 L g' 1 to 2.5 L g 1. Studies by Zhang and Sparks

(1.37)

a = a ’*BEPS + a ’*PSM (1-38)
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where a is the reaction rate constant of adsorption, a 'is  the rate coefficient of adsorption 

(L g*1 d '1), BEPS and PSM are described above. Nyffeler et al. (1984) and Zhang and 

Sparks (1990) found that a ’ for selenite ranged from 0.1 L g' 1 d*1 to 0.8 L g' 1 d l. By 

rearranging Equation 1.36, b can be solved as (Nyffeler et al., 1984; Bale, 1987)

b = —  (1.39)
Kd

with FQ defined above. This is a kinetic approach that Nyffeler et al. (1984) used to 

investigate the adsorption/desorption of selenite in sediments. The values of Nyffeler et 

al. (1984) are used for a ’ in the model.

The concentration of particulate organic selenide is a function of BEPS, PSM, and 

in situ production. Once phytopiankton take up dissolved selenium, as defined by the 

uptake rates (k4, k5, and k6 described earlier), it is converted into particulate organic 

selenide. Particulate organic selenium is defined as

= Se_,lsa> + -k , lPSe(- t l ) i  (1.40)

where Se^sED is the organic selenide concentration in the sediment (nmol g 1), Seorg.nvcr is 

the riverine concentration of organic selenide (nmol g l), BEPS and PSM (g L'1) are 

defined above (Section 1.4.6), ki is the oxidation of particulate organic selenide to 

dissolved organic selenide, and uptake is defined as

= k* n S e im i+ k ^ S e iV D l + KlDSei-Il)]  (1.41)

with the k values described above (Section 1.4.8.). The concentration and speciation of 

sedimentary selenium is discussed in Chapter IL Using the sediment data from Chapter
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Q, the selenium concentration in the bed of the sediment for each species (Equations 1.34, 

1.35 and 1.40) is quantified. Doblin et al. (in prep.) determined the PSM concentration at 

the riverine end member and those concentrations ranges are used to define PSM 

selenium (elemental selenium ranged from 1.04 to 5.01 nmol g'1, selenite + selenate from 

non-detectable to 3.21 nmol g '\  and organic selenide concentrations from 0.20 to 9.35 

nmol g 1).

The above equations define the biogeochemical cycle of selenium in the Northern 

Reach. The next chapter discusses the geochemistry of selenium in the sediments from 

the San Francisco Bay. Once the speciation of selenium in the sediments is quantified, 

the above model can be calibrated to observed dissolved and particulate data from 1999 

as presented in Chapter HI. A sensitivity analysis, presented in Chapter m, of the model 

will indicate which of the above parameters are controlling the dissolved and particulate 

concentrations and distribution of selenium in the Bay. Once the model is successfully 

calibrated, validation of the model using dissolved and particulate selenium data from 

1986, 1987, 1988, 1997, and 1998 will determine the ability of the model to predict 

selenium in the Bay under different environmental conditions. Upon successful 

validation, future predictions on how changing the flow from the San Joaquin River and 

changing refinery inputs would affect particulate and dissolved selenium concentrations 

are presented.
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CHAPTER H 

SEDIMENTARY SELENIUM IN THE SAN FRANCISCO BAY

2.1. SEDIMENT INTRODUCTION

The speciation of dissolved selenium in estuarine waters (Measures and Burton, 

1978; Takayanagi and Wong, 1984; Takayanagi and Cossa, 1985; van der Sloot et al., 

1985; Cutter, 1989b; Cutter and Cutter, in prep.) and its bioavailability (Price et al.,

1987; Fisher and Reinfelder, 1991; Luoma et al., 1992; Hu et al., 1996; Doblin et al., 

1999) have been extensively studied, but only a few researchers (Beizile and Lebel,

1988; Takayanagi and Beizile, 1988; Velinsky and Cutter, 1991; Peters et al., 1999) have 

examined the speciation of selenium in marine sediments (discussed in Chapter I). In 

estuarine sediments, diagentetic processes can change the speciation or phase 

(dissolved/particulate) of a trace element, and thus cause the sediments to act as an 

important source or sink to an estuary. For example, in the Chesapeake Bay methyl 

mercury is formed within estuarine sediments and released to the overlying water column 

during seasonal anoxia (Mason et al., 1999). Research by Takayanagi and Beizile (1988) 

showed that phase changes of selenium are occurring in sediments from the St. Lawrence 

Estuary. In these sediments the loss of solid phase selenium was balanced by an upward 

flux of pore water selenium to the overlying water (Takayanagi and Beizile, 1988). 

Determining the speciation of selenium in estuarine sediments provides additional 

information on biogeochemical reactions within the sediments, and their role as
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sources/sinks to the San Francisco Bay; the later was included in the estuarine selenium 

model described in Chapter I. This chapter discusses the geochemistry of sedimentary 

selenium in the Northern Reach of the San Francisco Bay.

2.2. METHODS

2 .2 .1. Sample Collection

The criteria for sediment sampling included finding areas where high selenium 

concentrations were reported in clams (e.g.. Macoma balthica and Corbicula sp.. Johns 

et al., 1988), taking cores in areas of sediment accumulation, and locating sites close to 

refinery effluent discharges. Sediment samples were taken in San Pablo Bay, Suisun Bay, 

the Delta, and a mudflat and marsh located in Martinez (Fig. 17).

Sediment and pore water samples were collected on 7 November 1997, 18 June 

1998, 7-8 October 1998, and 4-5 November 1999 using the R.V. David Johnson and a 

box corer. From each box core, one sub-core was taken for sediment sectioning and two 

sub-cores were taken to obtain pore water samples. Sediment sub-cores (20 cm deep) 

were obtained with an acrylic core tube (o.d. of 5.7 cm). Within an hour of collection, the 

sediment sub-core was sectioned in I cm intervals up to 5 cm. and below this depth, in 2 

cm intervals. All sediment samples were placed in polyethylene whirl pak bags and 

immediately frozen until processing.

High-resolution pore water samples were collected using the whole-core squeezer 

method described by Bender et al. (1987). The acrylic sub-core tube (o.d. of 7.7 cm) was 

inserted into the box core sediments, and the top piston, fitted with a 3.5 cm porous
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polyethylene disk on the bottom, and three-way valve to extract pore water was placed in 

the top of the sub-core tube before removal. Once removed, the bottom piston was 

quickly inserted into the bottom of the core. The sub-core was placed in a rack that held 

the core tube and top piston in place, while a hydraulic jack pushed the bottom piston up. 

causing the sediment to move to the upper piston of the squeezer. Water was pre-filtered 

through the porous polyethylene disk before it was transferred through a three-way valve 

into a gas-tight glass syringe (Zhang et al., 1998). After 10 mL of pore water were taken, 

the three-way value was closed, another syringe attached, and the sample was directly 

filtered through a 0.4 pm membrane filter into pre-cleaned glass vials. Due to low 

concentrations of dissolved selenium, pore waters from two sub-cores were combined. 

Pore water samples were immediately acidified to pH of 1.5 and refrigerated. Sub-cores 

were also taken to determine sediment porosity in order to convert the volume of pore 

water collected to depth intervals (Bender et al., 1987).

2.2.2. Analytical Methods

Sediment samples were dried at 50 °C, ground with an agate mortar and pestle, 

and sieved through a 150 pm nylon mesh screen; these sediments were stored in 30 mL 

polyethylene bottles. Processed samples were used to determine total sedimentary 

selenium and organic carbon, organic nitrogen, and sulfur (CNS). A Carlo Erba 1500 

Elemental Analyzer was used to determine CNS (Cutter and Radford-Knoery, 1991).

Total sedimentary selenium was determined using a three-step nitric-perchloric 

acid digestion on dried sediment as described by Cutter (1985). The method was
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modified so that after the final digestion and addition of hydrochloric acid, the sample 

solutions were passed through Bio-Rad AG 1X 8  anion exchange resin (chloride form, 

100-200 mesh); the eluent was collected. This removed any iron that might interfere in 

the subsequent determinations. The resin was rinsed with 10 mL of 4 M HC1 and this 

eluent was combined with the previous one in 30 mL polyethylene bottles. To measure 

digestion accuracy, a NIST standard (NIST SRM 2704, Buffalo River Sediment) was 

digested with the samples. The recovery of the SRM was 97.3 ± 5.3% (1.09 ± 0.06 pg 

g '1, n=l3) of the total selenium.

Elemental selenium was determined using a sodium sulfite extraction and 

oxidation with nitric acid as described by Velinsky and Cutter (1990) on wet sediments. 

The eluent was stored in 30 mL polyethylene bottles until analysis. Sedimentary selenite 

+ selenate was determined using a modified sodium hydroxide leaching technique 

developed by Cutter (1985). After the sodium hydroxide leach (Cutter, 1985), the 

supernatant was adjusted to pH 6 to 7 with hydrochloric acid and passed through Bio-Rad 

AG 1 X 8 anion exchange resin (100-200 mesh) which retains selenite + selenate. After 

the leachate was passed through the resin columns, they were rinsed with 15 mL of milli- 

Q water to ensure that only selenite + selenate were retained and the flow-through was 

discarded. Five milliliters of a I M solution of formic acid were added to the resin and 

the eluent was collected. The resin was then rinsed with 15 mL of 4 M HC1 and this 

eluent was combined with the previous one. The eluent was stored in 30 mL poly

ethylene bottles until analyzed.

Pore water samples were analyzed for total selenium, and if enough sample was
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left, selenite + selenate. Digested sediments and pore water samples were analyzed for 

dissolved selenium as described by Cutter (1978; 1983; 1985) and Velinsky and Cutter 

(1990) using selective hydride generation. Briefly, this involves the selective generation 

of hydrogen selenide from dissolved selenite using sodium borohydride and acidification, 

liquid nitrogen-cooled trapping, and atomic absorption detection with a quartz tube 

burner and an air-hydrogen flame.

The standard additions method of calibration was used to ensure accuracy (in 

addition to the analyses of SUM) and all digests were done in duplicate, with 

determinations made in triplicate. The detection limit for pore water was 0.06 nmol L'1 

and the precision was generally better than 15% (relative standard deviation). Total 

sedimentary selenium and its speciation had a detection limit of 0.01 nmol g '1 when 0.3 g 

were digested, with the precision better than 10% (relative standard deviation).

2 3 . RESULTS

23.1. General Sediment Characteristics

Estuarine sites (Sms. I through 7, 18 to 20, and 23; Fig. 17) were predominately 

fine grain silt and clay. Conomos and Peterson (1977) found that the channels of the 

estuary were composed of poorly sorted silty clay, clayey silt and sand-silt-clay. All 

estuarine sites had clams in the upper 2 cm, suggesting that bioturbation was occurring. 

The porosity and dry sediment density among estuarine sites was similar and averaged 

0.69 ± 0.05 (n=88) and 2.15 ±  0.10 g cm'3 (n=88), respectively, which agrees with values 

reported by van Geen and Luoma (1999). The sedimentation rate in the depositional
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zones of the estuary can range from 0.45 cm yr'1 to 4.5 cm y r1 (Fuller et al., 1999), with 

an estuarine average sedimentation rate of 0.9 cm y r1 (van Geen and Luoma, 1999). 

Organic carbon in the estuary did not vary with depth and was 1.35 ± 0.50% by weight (n 

=88) in the upper 5 cm. Organic nitrogen and sulfur averaged 0 .11 ± 0.01% by weight (n 

= 88) and 0.11 ±  0.01% by weight (n = 88), respectively, and both were constant with 

depth in the estuary.

The mudflat and salt marsh sites were located in the Martinez salt marsh (Sms. 24 

and 25; Fig. 17). Approximately 200 m of the mudflat site is exposed during low tide. 

The salt marsh flora is pre-dominantly Spartina altemiflora. Both the mud flat and the 

salt marsh site had fine grain, silty-clay compositions. The average porosity for the mud 

flat site was 0. 68 ± 0.03 (n =11), with a dry density of 2.21 ±0.03 g cm'3 (n=I 1). The 

sedimentation rate is currently unknown in these sediments. The concentrations of 

organic carbon, organic nitrogen, and sulfur were constant with depth and averaged 1.25 

± 0.02% organic carbon (n = 22), 0.10 ± 0.02 % of organic nitrogen (n=22), and 0.14 ± 

0.04 % (n=22) sulfur.

The Delta stations (Sms. 8, and 10 through 17; Fig. 17) had a clay and silt 

composition, with a 0.5 cm flocculent layer on top. As with the estuarine sites, there 

were clams in the upper 2 cm, suggesting that bioturbation was present. The average 

porosity was 0.69 ± 0.04, with a dry density of 2.21 ± 0.08 g cm'3 (n=99). In 1999, 

sediments in the Delta at Mildred Island (Stns. 21 and 22, Fig. 17) were collected. 

Mildred Island was farmland prior to a dyke breaking in 1983 and it was allowed to stay 

flooded. Approximately 6 cm from the top of the cores in Mildred, a change in sediment
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texture, and organic carbon, nitrogen, and sulfur were observed, suggesting that this is the 

soil horizon. Thus, assuming that the Delta has a similar sedimentation rate as Mildred 

Island, the rate is estimated to be 0.38 cm yr'1. Excluding those depths below 6 cm in 

Mildred Island, the organic carbon, nitrogen and sulfur concentrations did not greatly vary 

and averaged 6.09 ± 0.11 % (n=99), 0.43 ±  0.01 % (n=99), and 0.12 ±  0.02% (n=99), 

respectively.

2.3.2. Solid Phase Total Selenium

Total sedimentary selenium in the upper 2 cm at all the stations ranged between

2.0 and 7.9 nmol g '1, with concentrations in the Delta twice as high as those in the Bay 

and the salt marsh (Fig. 18). A statistical analysis of the data for total selenium in the 

upper 2 cm of estuarine, salt marsh, and Delta sites shows that there were significant 

differences (p=0.001) between surface total selenium concentrations in the Delta and the 

estuary, and between the Delta and salt marsh (p=0.019). There was little statistical 

difference in surface selenium concentrations between the estuarine and salt marsh sites 

(p=0.082). Johns et al. (1988) reported total sedimentary selenium concentrations of I to 

6 nmol g'1 from six stations in Suisun Bay, which are consistent with our results. 

However, total selenium concentrations in the Northern Reach were 2 times lower than 

those reported by Takayanagi and Beizile (1988) for estuarine sediments and Veiinsky 

and Cutter (1991) for salt marsh sediments.

Due to the number of stations, it is unfeasible to show the depth distribution for 

each one, and thus representative depth profiles from a station in San Pablo Bay (Stn. I),
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Suisun Bay (Stn. 19), and the Delta (Stn. 12) are presented (Fig. 19). For the estuarine 

sites, there was a slight increase in total selenium with depth, while in the Delta it had a 

constant concentration with depth (Fig. 19). The observed estuarine sediment behavior is 

contrary to what has been observed in most marine sediments, where total selenium is 

either constant or decreases with depth (Takayanagi and Beizile, 1988; Velinsky and 

Cutter 1991).

2 3 3 . Solid Phase Selenium Speciation

The concentration of elemental selenium at all sites ranged from 0.29 to 9.55 

nmol g '1. The estuarine sites had an average elemental concentration in the upper 2 cm of 

1.65 ± 0.45 nmol g '1 (n = 34), or 52% of the total. The surface concentrations of 

elemental selenium in the Delta were greater than the estuary (3.19 ± 0.53 nmol g '1, n = 

24), but the percentage of elemental selenium relative to the total was the same as the 

estuarine sites (52% of the total). The surface elemental selenium concentration in the 

salt marsh was 0.92 ± 0.02 nmol g'1 (n=4), or 47% of the total. There was no statistical 

difference in the percentage of elemental selenium between the Delta and the estuarine 

sites (p=0.317). For all sediment sites, the percentage of elemental selenium was 

consistent with other salt marsh (49 to 68%, Velinsky and Cutter, 1991) and fresh water 

sediments (40 to 95%, Beizile et al. 2000). The vertical distribution of elemental 

selenium as a percentage of total selenium was constant with depth for the estuarine sites, 

and a slight decrease with depth for the Delta (Fig. 20). This decrease with depth has 

been observed in marine sediments (Velinsky and Cutter, 1991)
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and an increase with depth has been observed in fresh water sediments (Beizile et al. 

2000).

Sedimentary selenite + selenate ranged from 0.03 to 1.99 nmol g '1 for all the 

sediment sites. The Delta sediments had a higher concentration of selenite + selenate 

(0.98 ± 0.37 nmol g*1) than the estuarine (0.41 ± 0.09 nmol g '1) and salt marsh sites (0.16 

± 0.04 nmol g '1) in the upper 2 cm, but once normalized to total selenium, the percentages 

of selenite + selenate in the Delta were similar to those in the estuary (16.0 ± 6% n=22 

for the Delta and 13 ± 3%, n=9 for the estuary). As with elemental selenium, there was 

little statistical difference in the percentage of selenite+selenate between the estuarine and 

Delta sites (p=0.421). The salt marsh had the lowest percentage of selenite + selenate at 

the surface (8 ± 2% of the total, n=4). The percentage of selenite + selenate (Fig. 20) 

remained constant with depth for the Delta, while in Suisun Bay there was a decreased 

with depth. The later trend is consistent with other marine sites (Velinsky and Cutter. 

1991).

For the entire data set, organic selenide in the upper 2 cm ranged from 0.07 to 

8.70 nmol g '1. In the Delta, the upper 2 cm had an average organic selenide concentration 

of 1.96 ± 0.31 nmol g '1, 1.08 ± 0.35 nmol g‘‘ for the estuarine sites, and 0.91 ± 0.14 nmol 

g"1 for the salt marsh. When normalized to total selenium, organic selenide in the upper 2 

cm was 34 ±11% (n=9) of the total selenium for the estuarine sites, and 32 ± 5% (n = 22) 

in the Delta, and there was little statistical difference (p =0.693) between the estuarine 

and Delta sites. The salt marsh had the highest percentage of organic selenide compared 

to the other stations (46 ± 7%, n=4), but it was not statistically significant compared to
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the other sites (p=0.113). The percentage of organic selenide varied considerably with 

depth and showed no consistent trend (Fig. 20). Similarly, Velinsky and Cutter (1991) 

reported an organic selenide concentration that ranged between 0.9 to 7.5 nmol g '1 (47 ±

11% of the L Se), with no consistent trend with depth.

23.4 . Dissolved Selenium in Pore Waters

Total dissolved selenium in pore waters ranged from I nmol L * to 6 nmol L'1 in 

the upper 2 cm of the San Francisco Bay sediments. The average pore water 

concentration for the Delta was 2.3 ± 0.2 nmol L’1 (n=24), with the estuarine sites having 

similar concentrations (2.7 ± 0.3 nmol L'1, n =56). The average concentration for the salt 

marsh was slightly higher at 3.4 ± 0.2 nmol L’1 (n=7). Vertical profiles of total dissolved 

selenium in pore waters increased with depth (Fig. 21) for San Pablo and the Delta, and 

remained constant in Suisun. Total dissolved selenium concentrations in pore water 

were similar to those reported by Takayanagi and Belize (1988) in the St. Lawrence 

Estuary (approximately 2 .1 nmol L 1). Zawislanski and McGrath (1998) reported a total 

dissolved selenium pore water concentration of approximately 50 nmol L‘‘ for the 

Martinez mudflat in 1995, which is inconsistent with the data shown here and other 

marine (Velinsky and Cutter, 1991) and fresh water (Beizile et al., 2000) sediments. The 

difference between their pore water concentrations and those reported here cannot be 

easily explained.

For all stations, selenite + selenate was 60 to 80% of the total dissolved selenium 

in the top I cm, but was non-detectable below 2 cm (Fig. 22). Organic selenide was
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approximately 20 to 40% of the total dissolved selenium in the top 1 cm and increased 

with depth (Fig. 22). Velinsky and Cutter (1991) found similar results for pore water 

selenite + selenate and organic selenide. Beizile et al. (2000) also found that there was a 

net increase of organic selenide with depth in pore water samples from freshwater 

sediments. However, in anoxic freshwater sediments, selenite was the most important 

fraction of the dissolved selenium (Beizile et al., 2000), which was not seen in these 

sediments.

2.4. DISCUSSION

2.4.1. Solid Phase Selenium and Carbon Relationship

In other marine sediments, a correlation between solid phase total selenium and 

organic carbon has been found (Sokolova and Pilipchuk, 1973; Beizile and Lebel, 1988; 

Velinsky, 1987). Sokolova and Pilipchuck (1973) suggest that the positive correlation 

between selenium and organic matter may be due to biological uptake of dissolved 

selenium in the overlying water or scavenging of dissolved selenium onto particulate 

organic matter. Even though the concentrations of solid phase total selenium were 

different between the estuarine and the Delta sites, the total selenium to carbon atomic 

ratios were similar (Delta Z Se:C was 1.1 ± 0. 5 x I O'6, n=99; estuarine X Se:C was 2.5 ± 

0.8 x I O'6, n=88). The linear regression using all stations and depths (except those in 

Mildred Island greater than 6 cm) resulted in a strong positive correlation between total 

selenium and organic carbon (Fig. 23; X Se:C 1.3 ±  1.0 x I O'6, r =0.846, n=l87).
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Fig. 23. Total selenium and organic carbon sediment concentration for all 
sediment sites. All depths are used except those below 6 cm in Mildred Island 
which were believed to be from the old soil horizon.
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Estuarine sediments from the Chesapeake Bay have a total sedimentary selenium 

concentration of 15 nmol g '1, which is five times greater than what was observed in the 

San Francisco Bay. However, the total selenium to carbon atomic ratio of 5.1 x I O'6 in 

the Chesapeake Bay (Cutter, unpublished data) is within the range of these in the San 

Francisco Bay sediments. These observations suggest that the mechanism causing the 

positive correlation between total selenium and organic carbon is the actual incorporation 

of selenium into organic matter (e.g., seleno amino acids in proteins of phytoplankton). 

Indeed, these E Se:C ratios are almost identical to those in phytoplankton cultures (3.2 ± 

6.2 x I O'6; Baines and Fisher, 2001; Doblin et al., in prep.). Thus, organic selenium can 

be delivered to sediments in phytoplankton detritus, as are additional particulate selenium 

forms in other detrital particles (e.g., elemental selenium in sediment particles). Other 

means of incorporating selenium in San Francisco Bay sediments (e.g., in situ reduction 

of selenite + selenate to elemental selenium) will be discussed below.

2.4.2. Diffusion of Pore Water Selenium

The internal cycle of sedimentary selenium in the San Francisco Bay can include: 

the oxidation of elemental (Geering et al., 1968, Velinsky and Cutter, 1991) and organic 

selenium (Velinsky and Cutter, 1991); the biotic reduction of selenite and selenate to 

elemental selenium (Shamberger, 1983; Oremland et al., 1989); and the biotic conversion 

to gaseous selenium (Reamer and Zoller, 1980, Amouroux et al., 2001). These 

transformations include changes between the solid and dissolved phases (i.e., pore water 

intermediates).
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Dissolved selenium in pore waters can be a source or sink of solid phase 

selenium, and thus the exchange with the overlying water was calculated. However, the 

presence of clams in the sediments, suggests that irrigation could affect the exchange of 

dissolved selenium with the overlying water. To account for possible irrigation in tht? 

sediments, the flux can be calculated using a modification of Fick’s First Law of 

Diffusion ( Bemer, 1980) that Emerson et al. (1984) and Hammond et al. (1995) used for 

shallow water estuarine sediments:

+ x ^ ( c „ - c i ) c2.i)

where J is the flux, <|> is the porosity, Ds is the effective diffusion coefficient. 9Se/9z i> the 

observed concentration gradient of pore water selenium, z, is the depth of zone i (cm), 

is the irrigation coefficient (s'1), Cw is the overlying water concentration, and C, is the 

average pore water concentration at depth i. A negative J indicates that the dissolved 

selenium is fluxing out of the sediments, while a positive J results from dissolved 

selenium fluxing into the sediments.

Irrigation coefficients for nutrients (e.g., phosphate) and some metals (e.g., iron, 

copper, nickel and cadmium) in shallow water estuaries range from 1 x I O'7 s '1 to 

20 x 10'7 s '1 (Emerson et al., 1984; Hammond et al., 1995). My study did not investigate 

what the irrigation coefficient of selenium was, but to ensure that irrigation processes are 

not underestimated, the maximum irrigation rate was used in Equation 2.1. The overlying 

water concentration at each sediment sites was not always determined, but Cutter and 

Cutter (in prep.) determined the surface water concentrations of selenium in the Northern
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Reach. Due to the well-mixed water column in the Northern Reach (Conomos et al.,

1979; Chapter I), the proximity of sediment sites to the estuarine dissolved selenium sites 

(less than 3 km), and little variation in total dissolved selenium in the estuary between 

sites (Cutter and Cutter, in prep.), the estuarine dissolved selenium values from Cutter 

and Cutter (in prep.) were used for Cw when data were not available for the actual 

sediment sites. Li and Gregory (1974) give the molecular diffusion coefficient, D, for 

selenium as 8.45 X 1CT6 cm2 s '1 at 18 °C. Correcting for tortuosity effects as described by 

Ullman and Aller (1982), the effective diffusion coefficient is 5.83 X I O'6 cm2 s '1.

The average flux due to diffusion and irrigation for total dissolved selenium is 

-0.03 ± 0.02 nmol cm'2 y r1 for the estuary and -0.15 ± 0.02 nmol cm'2 yr'1 for the Delta. 

The importance of diffusion versus irrigation can be investigated using Equation 2.1, with 

the first term in the equation being the diffusional fluxes and the second term is the 

irrigation flux. In this manner, less than 3% of the total flux to the overlying water was 

due to irrigation (Table 4). When examining the upper 2 cm of irrigated sediments, 

Emerson et al. (1984) found that the exchange between pore water and overlying water is 

primarily controlled by diffusion. These results are consistent with that finding. The total 

dissolved selenium fluxes from San Francisco Bay sediments are comparable to fluxes 

from other marine and fresh water sediments (-0.01 nmol cm'2 y r 1 to -0.11 nmol cm'2 yr'1; 

Takayanagi and Belzile, 1988; Velinsky and Cutter, 1991; Belzile et al., 2000).

Therefore, these sediments are a source of total dissolved selenium to the estuary and the 

flux is controlled by diffusion.

Using Equation 2.1, the fluxes of dissolved selenite + selenate and organic
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Table 4
Pore water fluxes in sediments from the Northern Reach
Area Diffusion Irrigation Total Flux

(nmol cm'2 yr ' )a (nmol cm'2 yr'1)11 (nmol cm'2 yr'')a
Estuarine Sites
Solid Phase (n=l5)

Sedimentary
ZSe NA NA +0.3 ±0.1
SeO NA NA +0.4 ± 0.2
Se IV+VI NA NA +0.0 ±0.1
Org. Se -II NA NA -0.1 ±0.1

Dissolved
Pore water
Z Se (n=l2) -0.03 ± 0.02 -0.002 ±  0.001 -0.03 ± 0.02
Se IV+VI (n=3) +0.06 ± 0.01 -0.001 ±  0.001 +0.06 ± 0.01
Org. Se -II (n=3) -0.09 ± 0.01 -0.001 ±  0.002 -0.09 ± 0 .0 1

Delta Sites

Dissolved
Pore water
Z Se(n=8) -0.15 ± 0.02 -0.005 ± 0.004 -0.15 ± 0.02
Se IV+VI (n=4) +0.14 ±0.02 -0.002 ±0.001 +0.14 ±0.02
Org Se -II (n=4) -0.30 ±0.02 -0.003 ±0.002 -0.30 ±0.02

a sign indicate a flux out of the sediments, while a " +” sign indicates input to the 
sediments
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selenide were also calculated for those stations where there was enough sample to do 

speciation analyses (n =3 in the estuary, n = 4 in the Delta). For both the estuary and 

Delta, dissolved selenite + selenate is fluxing into the sediments, while dissolved organic 

selenide is fluxing out of the sediments (Table 4). The average estuarine flux of selenite 

+ selenate is +0.06 ± 0.01 nmol cm'2 y r1 and +0.14 ± 0.02 nmol cm'2 yr'1 in the Delta, 

while the organic selenide flux is -0.09 ± 0.01 nmol cm'2 yr'1 and -0.30 ± 0.02 nmol cm'2 

yr'1 for the estuary and Delta, respectively. As with total dissolved selenium, irrigation is 

a minor part of the flux of dissolved selenite + selenate and organic selenide (Table 4). 

Pore water speciation data for other estuaries are nonexistent, and thus the results from 

Belzile et al. (2000) are used as a comparison. Using their pore water profiles at 

Clearwater Lake, Canada, the estimated flux was -0.05 nmol cm'2 yr'1 for selenite + 

selenate and -0.06 nmol cm'2 yr'1 for organic selenide. Therefore, the flux of selenite + 

selenate in the San Francisco Bay is different than that of Belzile et al. (2000), but the 

organic selenide fluxes are similar.

2.43. Solid Phase Internal Cycling

In order for selenium to accumulate in the estuarine sediments it has to either have 

a dissolved source or a change in inputs over time. For example, in fresh water sediments 

Belzile et al. (2000) found an increase in total selenium with depth, but this was due in 

situ  fixation of dissolved selenium to solid phase selenium. To explain, the observed 

selenium with depth in the estuarine sites, the first step is to quantify it and then look for 

matching input fluxes. The depth-integrated gain or loss of each solid-phase species was
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calculated using a simple equation from Berner (1980):

R (nmol Se cm'2 yr'I)= AC co p (l-<t>) (2.2)

where R is the accumulation rate, AC is the change in concentration over a 5 cm interval, 

o> is the sedimentation rate, p is the dry density, and <j> is the porosity. The average 

sedimentation rate, dry density, and porosity for the estuary were given above in Section

2.3.1. In the Delta, total selenium was constant with depth (Section 2.3.2), which is 

consistent with other marine sediments (Takayanagi and Belzile, 1988; Velinsky and 

Cutter, 1991), but means that R=0 for the Delta.

Equation 2.2 was applied to the estuarine sediments (Section 2.3.1. gives the 

density, sedimentation rates, and porosity values), and the average accumulation of 

selenium was 0.3 ± 0.1 nmol cm'2 yr'1 (Table 4). The sedimentary speciation data indicate 

that all of the gains in total selenium in the estuarine sediments are in the form of 

elemental selenium (+0.4 ±  0.2 nmol cm2 yr ';TabIe 4). The dissolved selenite +- selenate 

flux into the sediments is +0.06 ±  0.01 nmol cm2 yr'1. Therefore, for these sediments the 

influx can only explain 15 ± 3% of the gain in elemental selenium (Table 4).

Nevertheless, the loss of sedimentary organic selenide (XSe - Se (0)= 0.3-0.4 = -0.1 nmol 

cm2 yr'1) matches the efflux of dissolved organic selenide (0.09 nmol cm2 y r1, as above). 

Even though these estuarine sediment mass balance calculations appear to be correct, they 

cannot explain the observed increase in total sedimentary selenium.

Since dissolved pore water fluxes cannot account for the accumulation of 

sedimentary selenium in the estuary, the only other possible explanation could be a 

historical change in the inputs. These changes could be from a greater flux in particulate
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selenium or inputs of dissolved selenium from the overlying water via pore water 

exchange. Suspended particulate selenium data from Cutter (1989b) and Doblin et al. (in 

prep.) show that in the last ten years, the concentration of particulate selenium has 

remained relatively constant: changes in particulate selenium inputs then seem unlikely. 

However, Cutter and Cutter (in prep.) show a clear decrease in estuarine dissolved 

selenium of 2 nmol L*1 over the last 10 years, suggesting that pore water fluxes in the past 

may have been greater.

To calculate if a historical change could explain the accumulation of selenium, it 

was assumed under steady state that the sedimentary selenium profile would be uniform 

with depth from the surface. The difference between this and the observed profiles is 

then selenium from any additional fluxes. Since the change in estuarine dissolved 

selenium has occurred over the last 10 years, cores in the upper 10 cm were used for the 

following calculations (i.e., sedimentation rate of 0.9 cm yr'1) so that sediment records 

were on the same time scale as dissolved data. Average total sedimentary selenium in the 

estuary at the surface (0-2 cm) was 2.32 ± 0.28 nmol g'1 (n=2), and extending this steady 

state concentration to 10 cm gives an excess selenium concentration of 0.3 ± 0.2 nmol 

g '1 for the estuary. This difference was used in Equation 2.2 to get an accumulation rate 

of 0.2 ±  0 .1 nmol cm2 yr'1 for the estuary.

Cutter and Cutter (in prep.) found that the change in dissolved selenium in the 

estuary for 1986 to 1999 was due to a decrease in inputs of dissolved selenite + selenate 

from the refineries. The calculation above show dissolved selenite + selenate is currently 

fluxing into the sediments, and this flux would have been greater in the past when water
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column selenite + selenate concentrations were higher. Assuming that the average pore 

water concentration in the upper 2 cm (0.5 ± 0.3 nmol L'1) has not varied in the last 10 

years, the concentration of selenite + selenate in the overlying water that would be needed 

to explain the excess accumulation of selenium was calculated using Equation 2.1, 3.0 ±

1.1 nmol L'1. In comparison, dissolved selenite + selenate concentrations were as high as 

2.8 nmol L '1 10 years ago (Cutter, 1989b; Cutter and San Diego-McGlone, 1990). Based 

on these calculations, the accumulation of solid phase selenium that cannot be explained 

by internal cycling of selenium may actually be due to a historical change in refinery 

inputs of dissolved selenite + selenate in the estuary.

2.4.4. Conclusions

The primary sources of selenium to the San Francisco Bay sediments are particulate 

selenium from the rivers (biogenic and mineral detrims), biogenic particles produced in 

the water column (organic phytoplankton detritus), and diffusion of dissolved selenite + 

selenate from the water column followed by in situ reduction to insoluble elemental 

selenium. Unlike other marine sediments, the San Francisco Bay has sedimentary 

selenium concentrations that increase slightly with depth. Simple calculations indicate 

that this increase may be due to historical changes in overlying water concentrations of 

selenite + selenate (e.g., a change in the pore water flux and in situ fixation). However, 

deeper sediment cores (i.e., > 50 cm) would provide confirmation of this hypothesis by 

sampling sediments that predate the refineries.

Prior to this study, the speciation of solid phase selenium and the pore water flux
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from the sediments in San Francisco Bay were unknown. Solid phase elemental, selenite 

+ selenate and organic selenide concentrations that were needed to simulate particulate 

selenium in the estuary can now be specified (Equations 1.34, 135, and 1.40). The 

surface sediment concentrations of elemental selenium, selenite + selenate, and organic 

selenide from this Chapter will be used for the BEPS concentrations in Equations 1.34, 

1.35 and 1.40).
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CHAPTER HI 

MODEL SENSITIVY AND CALIBRATION

3.1. INTRODUCTION

A major goal in modeling is to simulate the behavior o f a system, without the 

model being over-parameterized (Tebes-Stevens et al., 2001). A systematic and 

comprehensive test, known as a sensitivity analysis, is preformed to investigate how 

changes in a parameter affect the model output (Beres and Hawkins, 2001; Starfield and 

Beleloch, 1991). The model used here has many parameters that need to be specified in 

order to simulate dissolved and particulate selenium behavior (Chapter I). Some of these 

parameters can be measured in the field (e.g., river discharge), while others parameters 

are determined through laboratory experiments (e.g., maximum rate of photosynthesis). 

Laboratory experiments usually establish limits for parameter values (Motovilov et al., 

1999), but there are those parameters where the limits are still under investigation (e.g., 

uptake of specific selenium forms by phytoplankton). The sensitivity analysis provides 

the modeler with a quantitative assessment of a parameters (e.g., must it be very 

accurately measured, or can it even be eliminated?). The quantitative results of a 

sensitivity analysis can also be used in interpreting the complex interactions between 

input variables, that would normally be hard to determine (Tebes-Stevens et al., 2001).

Once the sensitivity of the model is tested, a variety of procedures can be used to 

adjust the model parameters to the San Francisco Bay. These methods include model
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"calibration" and "data assimilation” (McLaughlin, 1995). Data assimilation methods use 

models to constrain parameters and are utilized when there are limited data (McLaughlin, 

1995). Parameter values are often updated whenever new data become available (Daley, 

1991; McLaughlin, 1995). Calibration involves using observed data to constrain 

parameters in the model (McLaughlin, 1995). For example, the maximum rate of 

photosynthesis at optimal light intensity (Pra, Equation 1.19) has a range from 24 to 219 

mg C (mg chi)'1 d’1. By doing a step-wise approach and looking at the fit between the 

model-derived output and the observed data, a Pm value is selected/optimized.

Extensive research has been done in the San Francisco Bay, and salinity, total 

suspended material, phytoplankton concentrations, and light attenuation coefficients in 

the water column have been measured for most months since 1969 by the United States 

Geological Service in California (http://slbav.wr.usgs.gov/access/wqdata/webbib.html). 

Dissolved and particulate selenium sampling occurred in 1986, 1987, 1988, 1997, 1998, 

and 1999 (Cutter, 1989b; Cutter and San Diego-McGlone, 1990; Cutter and Cutter, in 

prep.; Doblin et al., in prep). Since data are available, the method of calibration was used 

to constrain model parameters. The most extensive data set exists for the flow year 1999 

(e.g., chlorophyll-a, TSM, sedimentary selenium, dissolved selenium and its speciation, 

and particulate selenium and its speciation), and therefore it was used to calibrate the 

model. The calibrated model results are presented in this Chapter after the sensitivity 

analysis.
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3.2. METHODS 

3.2.1. Implementation

Simulations to test different time step values were run, and model simulations 

were solved with a time step of every 1.4 minutes (1/1000 of a day). The initial model 

parameter values (Table 5) were within the range of literature values cited above in 

Chapter I. The model was run from January 1, 1999 to December 31, 1999 for calibration 

and to obtain a "reference simulation". The reference simulation was then used in 

comparing model output data from the sensitivity analyses.

3.2.2. Analytical Sensitivity Analysis

There are four types of model uncertainties, including model structure, parameter 

values, ability to predict future system behavior, and experimental design and monitoring 

(Beck, 1987). Uncertainties in the model structure are investigated with the results from a 

sensitivity analysis. For this sensitivity analysis, the model output for all species of 

dissolved and particulate selenium were monitored. All the forms of selenium were 

monitored to determine if one species would be more difficult to simulate than another.

The large number of parameters in the model makes it extremely time-consuming 

to estimate the uncertainty of every parameter. Therefore, parameters used in the model 

were classified into one of the three categories (Table 6): accurately known parameters 

(accepted values), moderately inaccurate parameters (i.e., known, but have a large range); 

and very poorly known parameters (i.e., no published values). It is important to note that
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Table 5
Initial parameter values for calibration of the model to dissolved and particulate selenium data from 1999

Parameter Description Value Units Reference
a Rcsuspcndcd sediment at river end member 0.00463 gd 1 Harris et al. (1984)
b Permanently suspended sediment al the riverine end 0.00029 S L ' Harris et ul. (1984)
c Scales freshwater discharge to sediment input 0.7
d Scaling factor for 1) ,̂* 0.007
c Scaling factor for U^p, 2 Schocllhamcr (2001)
e Scaling factor Kbc,» 32 m
V Scaling factor Kllcpi 20 m
MjPhusc Tidal phase 125 degrees Godin (1972)
K| Phase Tidal phase 264 degrees Godin (1972)
0 |  Phase Tidal phusc 51 degrees Godin (1972)
MjFrequcney Tidal frequency 695.52 degrees d 1 Godin (1972)
K| Frequency Tidal frequency 360.96 degrees d 1 Godin (1972)
Ot Frequency Tidal frequency 334.56 degrees d 1 Godin (1972)
M2 Tidal amplitude 0.58 m Uncles and Peterson (1996)
K, Tidal amplitude 0.37 m Uncles and Peterson (1996)
o, Tidal amplitude 0.23 m Uncles and Peterson (1996)
Pn, Maximum rale of photosynthesis 73.95 mg C mg 1 chl-a d'1 Alpine and Clocrn (1992)
w Zooplankton weight 13 pg C animal'1 Hutchinson (1981)
Bk. Initial phytoplankton concentrations and scawutcr 

end member
2.3 pg chl-a L 1 Alpine and Clocrn (1992)

a Slope of the lighl-suturation curve divided by Pm 0.00394 Einst. m2d 1 Peterson and Fcsta (1984)
k, Light scattering due to suspended particles 10 L g 'rn '

ni'1kw Light scattering due to water 0.05 Miller and Zepp(l979)
kj Light scattering due to dissolved muter 0.05 m 1 Miller and Zcpp(l979)
r Mortality of phytoplankton through respiration 7.395 d' Cole and Cloern (1987)
C:Chl u Carbon to chlorophyll-a ratio 51 mgC mg 'chl-a Alpine and Clocrn (1992)
k| Rule constant 0.05 d Cutter (1991)
k2 Rate constant 0.004 d 1 Cutter (1991)
kj Rate constant 2.4 x 10 6 d 1 Cutter and Brulund (1984)
k4 Phytoplunkton uptake constant 15.905 L hr1 chl-a'1 Ricdel cl al. (1996)
kj Phytoplankton uptake constant 3.37 L hr1 chl-a1 Ricdcl et al. (1996)
ks Phytoplunkton uptukc constant 7.9525 L hr1 chl-a'1 Ricdel et al. (1996)
S eO M„ Elemental sedimentary selenium in PSP 1.25 nmol g 1 Chapter II
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Table 5 Continued
Parameter Description Value Units Reference
Se (IV+VI),,,,, Se IV+VI sedimentary selenium in PSP 0.63 nmol g'1 Chapter II
Org. Sc -II ps,, Org. Sc -II sedimentary selenium in PSP 0.63 nmol g 1 Chapter II
a' Rate of udsorption 0.13 L g ' d ' Zhang and Sparks (1990)
BEPSnm Riverine end member of BEPS 0.00463 g d ' Harris et al. (1984)
BEPS*, Sea water end member of BEPS 0 gd 1
v. Sinking of BEPS 86.4 md 1 McDonald and Cheng (1997)
w, Sinking of Phytoplunkton 0.5 m d 1 Clocrn (1991)
PSMiciwMCI Seawater end member concentration of PSM 0.1 g L ' Harris et al. (1984)
Delta removal Removal of selenium us transported through the 60%
effect Delta to the Bay

vO
00
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Table 6
Classification of parameters needed in ECoS to simulate the biogeochemical cycle of
selenium in the Northern Reach.

Well-known
Parameters

Moderately-known
Parameters

Poorly known Parameters

River Discharge Pm a
Refinery inputs a b

Mi W c
K, r d
o , ki e

B initial ki e
I k3 V
A Z ks

S  initial Se(0>BEPs kj
T S M jm tia l Se(IV + V I ) b e p s k5

Org. Se(-II)BEPS ks
Pg
a

Delta removal effect

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

even if a parameter is well known (e.g., river discharge), the model can be sensitive to it. 

To account for this, sensitivity analyses were done on all the poorly known parameters, 

and some of the moderately and well-known parameters.

The effects of parameter sensitivity can be determined by analytical methods (e.g., 

Fashem et al., 1993; Friedrichs and Hoffman, 2001) or by numerical estimates using 

Monte Carlo simulations (Annan, 2001). For the San Francisco Bay model, analytical 

methods were used to determine the sensitivity of various parameters using the technique 

of Fashem et al. (1993) and Friedrichs and Hoffman (2001). The sensitivity of the 

simulation to varying a given parameter was quantified by the normalized sensitivity 

(Sc*), as defined by Friedrichs and Hoffman (2001)

C - C i

5c* = kr - k ,  (3I)

k s

where Cr is the reference simulation (Section 3.2.1), kr is the reference parameter, ks is the 

adjusted parameter, and Q  is the simulation result when kr is changed. The model is 

insensitive if the | Sc.k I is less than 0.15, and sensitive if I Sc* | is greater than 0.15 

(Friedrichs and Hoffman. 2001). Due to the differences in flow within one year (Fig. 12), 

sensitivity results were divided into two periods, high flow months (December to May) 

and low flow months (June to November), to determine if there is a difference in 

sensitivity as a function of river discharge. The values reported in Section 3.3 are the 

estuarine averages for each flow period.

Five parameters were first tested to see if there was a difference in the normalized
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sensitivity when a parameter was varied by ±25%, ±50% and ±75%. Parameters chosen 

for this were riverine inputs, refinery inputs, phytoplankton growth, phytoplankton 

uptake, and sediment inputs (Appendix A). It was found that increasing the reference 

parameters by +25% produced similar Scjc’s to when the parameter was increased by 50% 

or 75% (Appendix B). Since some of the unknown parameters were also sensitive with a 

25% increase in kr, all other parameters were only varied by 25%. This allowed for a 

comparison between parameters to determine which were affecting the model output of a 

constituent. Furthermore, the only difference between a 25% increase in kr and a 

25% decrease in krwas the sign of Scjc (the absolute value was the same. Appendix B). 

Therefore, the results reported here are for increasing kr by +25%.

3.2.3. Model Calibration

Model calibration simulations for salinity, total particulate material, light 

attenuation, and dissolved and particulate selenium were compared to observed data. 

During calibration, literature values were used when possible, but there often was a large 

range in the reported values (e.g., ki. Table 3). For these parameters, a step-wise 

approach was used to determine which value produced the best fit between the model 

output and the observed data. A step-wise approach involves increasing/decreasing the 

parameter by 10% and finding the value that produces the best fit (i.e.. correlation 

coefficient) between the model output and observed data. When literature ranges were 

available, they were used to constrain this parameter optimization. If literature values 

were not available, parameter values were first set to zero then a step-wise approach was
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used. As discussed earlier, 1999 data were used to calibrate the model. There were 

reliable salinity, TSM, light attenuation coefficients, and phytoplankton concentrations 

for 9 of the 12 months of this year. Therefore, model calibration was done on these 9 

months for the above constituents. For dissolved and particulate selenium (and its 

speciation) data were only collected in April and November 1999, and the model could 

only be calibrated to these months.

Criterion for determining the best fit of a model to actual data often involves using 

two or more statistical measurements (Weglarczyk, 1998). For this model, three 

statistical analyses were used to determine the ability of the model to reproduce the 

observed behavior of salinity, total particulate material (TSM), the attenuation of light 

(k), and the speciation of dissolved and particulate selenium. The linear correlation 

coefficient, r, between the simulated values and the observed data was reported as one 

statistical parameter. The correlation coefficient does not indicate the bias of the model 

(Weglarczyk, 1998), but is used mainly for model optimization (Alewell and 

Manderscheid, 1998). Outliers in the observed data, and invariance of the data affect the 

correlation coefficient, which is why it is usually used mainly for model optimization.

The criterion for determining if a correlation coefficient is significant depends on the 

degrees of freedom (Zuwaylif, 1979). The statistical significance of the correlation 

coefficient as a function of the degrees of freedom is determined from standard statistical 

tables (e.g., Zuwaylif, 1979) and for the correlation coefficient, the 95% confidence 

interval was used ( r o . o s ) .

Model bias is reported as the mean cumulative error, M (Perrin et al., 2001). The
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mean cumulative error is the sum of the simulated concentration minus the observed 

concentration divided by the number of observations. A negative sign indicates that the 

model is under predicting relative to the observed values, while a positive sign shows the 

model is over predicting. The mean cumulative error is only used as an indication of 

model bias, but it can also be expressed as a confidence interval. The overall ability, or 

confidence, of the model to reproduce the observed data can be defined by the equation 

from Perrin et al. (2001)

where Cl is the confidence interval, is the model simulation concentration and Xot* is 

the observed concentration. A perfect agreement between the two occurs when Cl is 

100%. A confidence interval of 50% indicates that the model is able to simulate the 

observed concentration 50% of the time. Unlike the correlation coefficient, the 

confidence interval is not affected by outliers or data variation, and therefore it is often a 

better indicator of model fit (Perrin et al.. 2001). Finally, mean selenium concentrations in 

the estuary (sum of the concentrations divided by the number of observations) for model 

simulations and the observed field data were also used in comparing overall model fit to 

the data.

The best fit is when the significance of the linear correlation coefficient is greater 

than the critical ro.os, the overall model confidence interval is greater than 75%, and 

model-derived averages for the estuary are within the errors of the observed estuarine

C/(%) = 100* I (3.2)
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averages (Perrin et al., 2001). A correlation coefficient that is less than roos does not 

necessarily indicate that the model is not working, but could be a reflection of outliers 

(noise) in the data and/or invariance of the data (i.e., the concentration of some parameter 

is relatively constant across the salinity gradient). Therefore, a reasonable fit between the 

simulated concentrations and the observed concentrations still exits if the confidence 

interval is greater than 75% and the estuarine averages agree.

3 3 . SENSITIVITY ANALYSIS

33.1 . High Flow Sensitivity Analyses

As noted above, the model was considered sensitive to a parameter when the 

absolute Scjt was 0.15 or greater, and can be used to indicate which parameters are 

controlling the model output. Therefore, the values reported in the following discussion 

are the absolute values unless otherwise indicated. Modeled total dissolved selenium 

concentrations during the high flow months (December to May) were only sensitive to 

riverine discharge (Scjc = 1-00) and the "Delta removal effect” (refer to Section 1.4.8. for 

a detailed explanation) applied to the San Joaquin River (Scjc = 0.44). Absolute Sc.k’s 

indicate that during high flow, river discharge was more important in model output of 

total dissolved selenium than the "Delta removal effect" (Table 7).

Varying river discharge had the greatest effect on selenate concentrations relative 

to the reference simulation (Scj£. =2.68), but the Scjc of selenite and organic selenide 

indicated that they were also sensitive to river discharge (Table 7). However, Scjc shows 

that selenite was affected more by the "Delta removal effect" (0.34) than by the increase
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Table 7
Sensitivity analyses for changing parameters by 25 % during high flow months (December to May). Dash lines indicate that the 
model is insensitive to varying that parameter ( I Sc.k I < 0.15)___________________________________________________________
Parameter D IS e  D Se IV D Se VI D Org. Se -II Part. £Se Part. Se IV+VI Part Se 0 Part. Org Se-II
a . . . . . . - •

b . - 0.24 0.24 0.26 0.25
c . - 1.07 1.13 1.22 0.81
d . - 0.18 0.17 0.19 0.18
e . - - 0.17 - -
E . - - - - -

V . - -0.20 -0.22 -0.22 -0.16
Pm . - - - - 0.36
a . - - - - 0.35
W . - - - - -
ks . - - - - -

ki - - - - - -

k2 . - - - - -

k4 . - - - - -

ks . - - - - -

k& - - - - - -

River
Discharge

1.00 0.17 2.68 0.15 0.45 0.54 0.33 0.49

Refinery . - - - - -

h . - - - - 0.35
R . - - - - -

A' . - - 0.21 - -

Z - - - - - -

Pg . - - - - -

Delta removal 
effect

-0.44 -0.34 -0.51 -0.35 - - - -0.16
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in river discharge (0.17). This was also observed for organic selenide (Table 7), but for 

selenate a change in river discharge resulted in a higher (2.68) than the "Delta 

removal effect" (0.51). It was surprising that during high flow months an increase in the 

parameters that define oxidation of selenium (ki to k3) and selenium uptake (ki to ks) had 

no effect on total dissolved selenium and its speciation (Sc.k’s less than 0.15). This may 

be due to relative short residence time of the water (e.g., 14 days).

Particulate selenium concentrations during high flow were dependent on a number 

of variables, including river discharge, parameters that define PSM inputs, and the 

velocity and movement of BEPS (Table 7). Varying the parameter that scales river 

discharge to sediment inputs of PSM (c in Equation 1.13), resulted in the highest change 

in particulate selenium concentrations (Scjc = 1.07), followed by varying the riverine input 

(Scjc = 0.45). Modifying the concentration of suspended sediment at the riverine end 

member (b in Equation 1.13) had a modest effect and resulted in a Scjc of 0.24 for total 

particulate selenium. The absolute values of Scjt show that total particulate selenium is 

largely defined by parameter c (1.07), followed by river discharge (0.45).

Like total particulate selenium, particulate selenite + selenate was sensitive to 

parameter c (Scjc =1.13) and river discharge (Scjc= 0.54). Varying b (Equation 1.13), the 

constants in the velocity of BEPS (d and e Equation 1.15), the rate of adsorption (a ' in 

Equation 1.36, 1.38, 139), and q/ constant in the dispersion of BEPS (Equation 1.16) 

resulted in similar absolute values of Scjc (range from 0.17 to 0.24) for particulate selenite 

+ selenate (Table 7), As with total selenium, the absolute value of S,^ model output is 

largely controlled by parameter c.
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Elemental selenium was sensitive to b and c (Equation 1.13), the parameter 

constants used to define the velocity of BEPS (d and e in Equation 1.15), the constant in 

the dispersion of BEPS (y in Equation 1.16) and riverine discharge. A change in 

parameter c resulted in the highest change in elemental selenium (Scjt = 1.22). River 

discharge, b (Equation 1.13), d and e (Equation 1.15), and y  (Equation 1.16) resulted in 

similar Scjc (range 0.19 to 0.33). As with particulate selenite + selenate, elemental 

selenium is largely a function or parameter c (Equation 1.13, absolute Scjt=l.22).

Unlike inorganic particulate selenium, particulate organic selenide was sensitive 

to more of the parameters in the model. In addition to those for elemental selenium, 

particulate organic selenide was also sensitive to the maximum rate of photosynthesis at 

optimal light intensity (Pm in Equation 1.19, Scjc =0.36), the initial slope of the light- 

saturated curve (a  in Equation 1.19, =0.35), the daily surface photosynthetically

active radiation (I>. in Equation 1.21, Scjc =0.35), and the "Delta removal effect" of 

selenium from the San Joaquin River (Scjc =0.16, Table 7). Particulate organic selenide 

Scjc’s also indicate that parameters affecting phytoplankton growth (Pm, ot, and I*.) 

produced higher Scjc (0.35) than varying d or e (0.16 to 0.25), suggesting that 

phytoplankton growth has more of a control than sediment resuspension over model- 

derived particulate organic selenide concentrations. However, parameter c is still the 

dominant parameter in defining the model-derived particulate organic selenide 

concentrations.

In summary, the absolute values of Scjc indicate that during high flow for total 

dissolved selenium, the model output is sensitive to river discharge and “Delta removal
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effect” of the San Joaquin input. Model-derived particulate selenium was controlled by 

the riverine input of PSM (c in Table 7), followed by riverine discharge rates (Table 7). 

The sensitivity results indicate that for high flow months the speciation of dissolved 

selenium was affected by 2 of the 24 parameters tested, while total particulate selenium 

output was affected by 5 of the 24 parameters tested. Particulate organic selenide was 

affected by the most number of parameters (9 of the 24 tested).

33.2. Low Flow Sensitivity Analyses

As with the high flow months, only the absolute values will be discussed since 

they can be used to indicate which parameters are largely defining the model output. For 

low flow months (June to November), total dissolved selenium concentrations were 

affected by varying river discharge and the refinery effluent discharge rates (Table 8). 

Increasing refinery discharge rates resulted in a Scjc of 0.33 for total dissolved selenium, 

while the Sc.k was 0.25 when riverine discharge was varied. Not surprisingly, the model 

is more sensitive to refinery discharge during low flow than during high flow (Table 7, 

Scjc less than 0.15). All of the species of dissolved selenium were affected when river 

discharge and refinery inputs were varied, but selenate was affected the most (Scjc of 0.39 

for river discharge and 0.36 for refinery inputs). A ScjtOf 0.40 resulted when the uptake 

of selenate by phytoplankton (ks in Equation 1.30) was varied. This is greater than the 

Sc* for an increase in river discharge (0.39) and refinery inputs (0.36), suggesting that 

phytoplankton uptake is important in predicting selenate concentrations in the estuary 

during low flow months. It was surprising that the model was not sensitive to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 8
Sensitivity analyses for changing parameters by 25 % during low flow months (June to November). Dash lines indicate that the 
model is insensitive to varying that parameter ( 1 1  < 0.15)___________________________________________________________
Parameter D £ S e  D S e lV D S e VI D Org. Se -11 Part. £S e Part. Se IV+VI Part Se 0 Part. Org Se-II
a - - - . - -

b - - - 0.16 0.28 0.30 -

c - - - 0.84 1.41 1.32 0.18
d - - - -0.37 -0.37 -0.61 -0.21
e - - - 0.39 0.45 0.59 0.21
e - - - - - - -

V - - - - -0.18 - -

Pm - - - 0.97 - - 1.58
a - - - 0.95 - - 1.56
W - - - -0.20 - - -0.40
ks - - - - - - -0.23
ki - - - - - - -0.15
k2 0.18 - - - - - -

k4 - - - - - - 0.15
ks - 0.40 - 0.21 - - 0.40
kft - - - - - - 0.24
River
discharge

0.25 0.34 0.39 0.15 0.96 1.45 1.39 0.22

Refinery 0.33 0.33 0.36 0.28 0.23 - - 0.36
h - - - 0.95 - - 1.56
R - - -0.44 - - -0.94
a ' - - - 0.15 0.50 - -

Z - - - - - - -0.15
P* - - - - - - -0.70
Delta
removal effect

- - - - - - -
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the uptake of selenite (k4 in Equation 1.31) and organic selenide (k6 in Equation 1.32). 

This was probably due to the uptake being a function of concentration (Equation 1.30 to 

1.32); even though the uptake rate was increased, the low selenite and organic selenide 

concentrations in the estuary controlled the overall rate. When k2, the oxidation of 

dissolved organic selenide to selenite (Equation 1.31), was varied the Scjc was 0.18 (Table 

8). Increasing the "Delta removal effect" of the San Joaquin River had no effect (Table 8) 

due to the small discharge from the San Joaquin (usually less than 10 m3 s '1) during these 

low flow periods. Overall, model output for total dissolved selenium was largely 

controlled by refinery inputs followed by riverine inputs.

Total particulate selenium was sensitive (| S cjJ  greater than 0.15) to the same 

parameters at low flow as those at high flow (Table 8). In addition, model output of total 

particulate selenium was also sensitive to the refinery inputs (Sc* = 0.23), Pm and a 

(Equation 1.19; Scjc range 0.95 to 0.97), I>. (Equation 1.21 Sc* = 0.95), the rate of 

adsorption (a 'in  Equation 1.36, 1.38, 1.39, Sc* = 0.15), and mortality due to respiration 

(R in Equation 1.17, Sc*=0.44). Contrary to what was observed during the high flow 

months (Table 7), the absolute Scjc value for total particulate selenium was the highest 

when Pm was varied ( | Scjc | = 0.97; Table 8). Therefore, phytoplankton productivity is 

as important as other parameters like river discharge for the low flow months. Overall, 

total particulate selenium was sensitive to 13 of the 24 parameters (Table 8) varied.

Particulate selenite + selenate had a Sc* of 1.45 when river discharge was varied, 

and 1.41 when the riverine input of PSM was increased (c in Table 8). During low flow, 

the model was sensitive to the same parameters as described in Section 3.3.1, but the
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magnitude of each increased. For example, increasing adsorption during high flow 

resulted in a Sc* of 0.21 (Table 7), but the same increase during low flow resulted in a 

Scjc of 0.50 (Table 8). This increase is likely due to the longer residence time of the 

water during low flow periods (i.e., 30 days). As with particulate selenite + selenate, 

elemental selenium was sensitive to the same parameters identified during high flow 

conditions (Section 3.3.1), with the highest S,^ value of 1.39 when river discharge was 

increased. Overall, for both particulate selenite + selenate and particulate elemental 

selenium river discharge had the greatest effect on model output ( | Scjc | values of 1.45 

and 1.39jespectively, Table 8).

Sensitivity results for particulate organic selenide during low flow were different 

than those during high flow months. In addition to being sensitive to the parameters 

discussed during high flow months, the model output was also sensitive to ks (light 

attenuation due to particles. Equation 1.23, Sc.k = 0.23 ), the conversion of particulate 

organic selenide to dissolved organic selenide (k| in Equation 1.32, Scjc=0-15), the uptake 

of selenite, selenate, and organic selenide (Equation 1.30 through 1.32: Scjc range 0.15 to 

0.40), zooplankton biomass (Z in Equation 1.25, Scjc=0.l5), and the morality rates of 

phytoplankton (R and Pg in Equation 1.17, Scjc range of 0.74 to 0.90). For particulate 

organic selenide, the model output was greatly affected by pm (1.58), a  (1.56), and l\

(1.56). In comparison, riverine discharge resulted in a | | o f 0.22. which was seven

times lower than the absolute of the aforementioned parameters. For particulate 

organic selenide, the model outputs for 17 of the 24 parameters tested were sensitive to a 

25% variation.
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In summary, total dissolved selenium during low flow is a function of river 

discharge rates and refinery inputs, while total particulate selenium is sensitive to 

parameter c, phytoplankton growth parameters, and river discharge. The most difficult 

species to simulate is particulate organic selenide for both low flow and high flow months 

(Table 7 and 8).

33.3. Conclusions Based on Sensitivity Analyses

As discussed earlier, sensitivity analysis can be used for model simplification and 

for understanding which parameters are responsible for observed particulate and 

dissolved selenium concentrations in an estuary for each flow period. The sensitivity 

analyses indicate that the modeled dissolved selenium is mostly defined by the variability 

in river discharge and refinery inputs. Particulate selenium concentrations, however, are 

dependent on a large number of parameters ranging from riverine inputs to biological 

uptake. In some estuaries, river flow dominates the estuarine profile of a nutrient 

throughout the year (e.g., Apalachicola Bay Estuary, Florida; Chanton and Lewis. 1999), 

while other estuaries (e.g., Chesapeake Bay) are dominated by phytoplankton changes 

(McCarthy et al., 1975). The sensitivity analyses show that the dissolved selenium 

concentration is river flow dominated for both high flow and low flow periods. However, 

particulate selenium in the San Francisco Bay is between these two extremes, with river 

dominance during high flow periods and biological productivity dominating during low 

flow periods (i.e., | Sc.kl was greater for increasing optimal phytoplankton growth, Pm, than 

for increasing river discharge). This behavior has been observed by Peterson et al. (1985)
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for nutrients in the San Francisco Bay where, depending on the river flow, the estuary can 

be river-dominated or phytoplankton-dominated.

Sensitivity analyses further indicate that the only parameter that had an absolute 

Scjc value less than 0.15 was parameter a (concentration of bed-exchangeable sediment at 

the river end member. Equation 1.13). For some of the parameters tested (e.g., ki), the 

effect on total dissolved selenium and its speciation was minor, but the Scjc of particulate 

organic selenide was greater than 0.15. Therefore, dissolved selenium uptake is 

important for predicting particulate selenium and these parameters needs to remain in the 

model. Based on the above findings from the sensitivity analyses, the only simplification 

to the model before calibration can be the removal of a in Equation 1.13 because varying 

it has no effect on the model derived concentrations. With this removal, the model can 

now be calibrated to the observed data from 1999.

3.4. MODEL CALIBRATION

3.4.1. Conservative Solute

The transport of a solute in the estuary is a function of the water velocity and the 

dispersion coefficient (Equation 1.9). Both of these variables are a function of the cross- 

sectional area of the estuary (Section 1.4.5.). The model-simulated area (Fig. 24) 

indicated excellent agreement (r = 0.999, Cl = 100%) between the simulated area and that 

of Uncles and Peterson (1996), suggesting that the estuarine shape is correctly defined.

Actual observed dispersion coefficients for the time period of interest were not 

available, but past research by Selleck (1968), Gleene and Selleck (1969), and Cifiientes
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Fig. 25. Model simulated Kw for the Northern Reach of the San Francisco Bay.
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et al. (1990) found that the dispersion coefficient in the Northern Reach of the Bay varied 

between 16 to 812 m2 s '1, with the highest values in Carquinez Strait. The model 

simulated dispersion coefficient (Equation 1.10) was between 24 to 650 m2 s 1 in April of 

1999 (Fig. 25), with the lowest dispersion coefficient at the riverine end member and it 

increased to its maximum value in Carquinez Strait. This trend is consistent with past 

results (Selleck, 1968; Gleene and Selleck, 1969; Cifuentes et al., 1990), indicating that 

the dispersion of water within the model was correctly defined by Equation 1.10.

Salinity is a conservative tracer and the comparison of model simulated versus 

actual salinity can be used to determine if the hydrological parameters (e.g., tides, river 

flow) in the model are correctly assigned. Salinity data for 1999 was obtained from the 

United States Geological Service (USGS) continual monitoring program in the Northern 

Reach (http://sfbav.wr.usgs.gov/access/wqdata/webbib.html). and Cutter and Cutter (in 

prep.). During the spring, high river discharge resulted in fresh water intrusion into 

Suisun Bay (December through June, Fig. 26), while in the fall, low river discharge 

allowed salt water intrusion into the fresh water end member (August to November, Fig

3.3). Salinity at the Golden Gate varied from 25 in the spring to 32.5 in the fall (Fig 26). 

Model computations reproduced the observed salinity variability within the estuarine for 

the entire year (Fig. 26). The model-simulated salinities relative to the measured data 

have linear correlation coefficients greater than 0.95 for all months simulated and the 

correlation coefficients are significant at the r<j.oi level. The mean cumulative error varied 

from -3.16 to a +2.82 and the confidence interval was greater than 75% for all months 

(Fig. 26). Due to the large range of observed salinities within the estuary, using the
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Table 9
Final parameter values for calibration of the model to dissolved and particulate selenium data from 1999

Parameter Description Value Units Reference
b Permanently suspended sediment at the riverine end 0.00029 g L ' Harris el al. (1984)
c Scales freshwater discharge to sediment input 0.7
cl Scaling factor for Ui*,* 0.007
e Scaling factor for Ubep, 2 Schoellhamcr (2001)
e Scaling factor K^p, 32 m

V Scaling factor K^p, 20 m
MjPhuse Tidal phase 125 degrees Godin (1972)
K| Phase Tidul phase 264 degrees Godin (1972)
0 | Phase Tidal phase 51 degrees Godin (1972)
MjFrequency Tidal frequency 695.52 degrees d 1 Godin (1972)
K| Frequency Tidul frequency 360.96 degrees d 1 Godin (1972)
0 ( Frequency Tidal frequency 334.56 degrees d 1 Godin (1972)
m 2 Tidal amplitude 0.58 nr Uncles and Peterson (1996)
K, Tidal amplitude 0.37 m Uncles and Peterson (1996)
o , Tidal amplitude 0.23 m Uncles and Peterson (1996)
Pm Maximum rule of photosynthesis 73.95 mg C nig'1 chl-u d 1 Alpine and Cloern (1992)
W Zooplankton weight 13 pg C animal' Hutchinson (1981)

Iniliul phyloplunkton concentrations and seawater 
end member

2.3 pgchl-a L'1 Alpine and Cloern (1992)

a Slope of the light-saluration curve divided by Pm 0.00394 Einst. mJ d 1 Peterson and Fcsta (1984)
k, Light scattering due to suspended particles 10 L g ' m 1
kw Light scattering due to water 0.05 m' Miller and Zcpp(l979)
ke Light scattering due to dissolved mater 0.05 m 1 Miller and Zcpp(l979)
r Mortality of phytoplankton through respiration 7.395 d* Cole and Cloern (1987)
C:Chl a Carbon to chlorophyll-u ratio 51 mg C mg'1 chl-a Alpine und Cloern (1992)
k, Rate constant 0.05 d Cutler (1991)
ki Rale constant 0.004 d 1 Cutter (1991)
kj Rule constant 2.4 x 10 6 d 1 Cutter and Bruland (1984)
k4 Phytoplankton uptake constant 15.905 L hr'1 chl-a'1 Ricdcl el al. (1996)
kj Phyloplunkton uptake constant 3.37 L hr1 chl-a 1 Ricdel et al. (1996)
kft Phyloplunkton uptukc constant 7.9525 L hr'1 chl-a1 Ricdcl cl al. (1996)
Sc 0  p,p Elemental sedimentary selenium in PSP 1.25 nmol g 1 Chapter II
SedV+VD™ Se 1V+VI sedimentary selenium in PSP 0.63 nmol g'1 Chapter II 118
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Tuble 9 Continued
Parameter Description Value Units Reference
BEPSnve, Riverine end member of BEPS 0.00463 g d ' Harris et nl. (1984)
BEPS*, Sea wulcr end member of BEPS 0 gd 1
V, Sinking of BEPS 86.4 m d' McDonald and Cheng (1997)
w, Sinking of Phytoplankton 0.5 m d 1 Cloern (1991)
PSMic,w,ic, Seawater end member concentration of PSM 0.1 g L' Harris et al. (1984)
Delta Removal Removal of selenium as transported through the 60%
effect Delta to the Bay
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estuarine average criteria (Section 3.2.3) is not appropriate (i.e., the simulated average 

will always fall within the error bars of the observed mean). Thus, the physical dynamics 

that control the behavior of a conservative solute (salinity) appear to be functioning 

correctly. Since the model was able to accurately simulate salinity, all subsequent plots 

will be'versus salinity instead of distance so that non-conservative and conservative 

behavior in the estuary can be easily identified (Loder and Reichard, 1981).

3.4.2. Total Suspended Material

Equations 1.11 through 1.16 were used to simulate total suspended particles 

within the estuary. Model parameters used to define TSM are given in Table 9.

Observed TSM data were obtained from the USGS continual monitoring program in the 

Northern Reach (http://sfbav.wr.usgs.gov/access/wqdata/webbib.htmn and Doblin et al. 

(in prep.).

TSM maxima between a salinity of 1 to 6 have been observed in the Northern 

Reach from 1974 to 1977 (Arthur and Ball, 1979). Recent data analysis by Shoellhamer 

(2001) from 1993 to 1997, reported similar findings, with the highest TSM values in 

August. In 1999, the observed TSM values ranged from 10 mg L*1 in the winter to 170 

mg L '1 in the late summer (Fig. 27). The model was able to reproduce the annual 

variability in TSM concentrations and the estuarine profiles of TSM with a maximum 

located between salinity of I to 6 (Fig. 27). As with the observed data, the model 

produced a maximum TSM concentration in August, with the minimum occurring in 

November. However, the simulated TSM maximum tends to decrease at a greater rate
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than the observed TSM for some months (e.g., September 14, 1999, Fig. 27). This may 

be due to localized events (e.g., wind mixing) that keep sediment in suspension (Krone, 

1962).

For January, April, August, October, and December the mean cumulative error 

indicates that the model was over predicting TSM (ranged from 0.59 to 8.62 mg L'1; Fig. 

27). The model was under predicting TSM for the remaining months (ranged from -7.63 

to -2.15 mg L’1). Even though these cumulative errors may appear to be high, the overall 

ability of the model to reproduce the observed estuarine concentrations ranged from 75% 

to 98% (Fig. 27), showing that these cumulative errors were low. The correlation 

coefficient ranged from 0.408 to 0.825, but based on the r0.os» the model fit to the 

observed data was significant for all the months simulated except for May and December 

(Fig. 27). Even though the correlation coefficients were low for these months, the 

confidence interval was 87% for May, 87% for October, and 82% for December and the 

observed estuarine average (35 ± 21 mg L'1 for May, 11 ± 6 mg L‘‘ for October, and 16 ± 

5 mg L‘‘ for December) and simulated averages agreed (39 ±  32 mg L'1 for May, 19 ± 11 

mg L*1 for October, and 19 ± 9 mg L*1 for December; Table 10). For all months 

simulated estuarine observed averages agreed with the simulated averages (Table 10), 

with an observed yearly TSM of 29 ± 20 mg L '1 and a model-simulated yearly TSM of 33 

± 18 mg L*1. Based on the above statistical analysis, the model is able to simulate TSM 

reasonably well.
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3.43. Phytoplankton Concentrations

The absorption and scattering of light due to particles within the water column, 

decreases the amount of light available for phytoplankton growth (Miller and Zepp,

1979). Light availability is important in the San Francisco Bay because it is a light 

limited estuary (Cloem, 1991; Peterson et al., 1987) and light attenuation in the water 

column was simulated using Equation 1.23 (final parameters values for the model in 

Table 9). Light attenuation in the water column is monitored by the USGS (Fig. 28; 

http://sfbav.wr.usgs.gov/access/wQdata/webbib.htmll. An observed maximum light 

attenuation of 9 m '1 occurs in June (Fig. 28). The observed estuarine profile of light 

attenuation was similar to the TSM profiles, with high light attenuation occurring at the 

TSM maxima.

The observed yearly variability in light attenuation was reproduced during model 

simulations (Fig. 28). Correlation coefficients ranged from a low of 0.402 for September 

to a high of 0.943 for November (Fig. 28). Except for May and September, the 

correlation coefficients were significant at the ro.os level (Fig. 28). Although, these 

months may have had lower correlation coefficient, the ability of the model to produce 

the overall observed behavior (confidence interval) was 99% (May) and 75% (September; 

Fig. 28). Confidence intervals ranged from the lowest in September and up to 99% in 

January, May and December (Fig. 28). Model-derived light attenuation coefficients were 

slightly higher than the observed data for 6 of the 9 months (highest mean cumulative 

error ranged from +0.02 to +0.62 m 1). Simulated estuarine averages agreed with the 

observed data (Table 10). Therefore, the correlation coefficient, the confidence interval.
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and the estuarine averages all indicate that the model was able to reasonably reproduce 

the field data.

Chlorophyll-a concentrations were used as a measure of phytoplankton biomass in 

the estuary (Equation 1.17). Observed chlorophyll-a concentrations were obtained from 

the USGS continual monitoring program

(http://sfbav.wr.usgs.gov/access/wqdata/webbib.html) and Doblin et al. (in prep.). 

Observed chlorophyll-a concentrations ranged from I |ig chi L'1 to 10 pg chi L'1, with a 

spring bloom occurring in April/May (Fig. 29). The yearly estuarine average 

phytoplankton concentration was 2.7 ±1.6 pg chi L '1. Discrepancies between field data 

from the USGS data and Doblin et al. (in prep.) were observed in April (Fig. 29), but 

there was no indication why this difference existed, so both values were plotted.

Model simulations resulted in a spring bloom in May and low chlorophyll-a 

concentrations in December/January (Fig. 29). Model-simulated estuarine profiles 

generally agree with the observed field data (Fig. 29). The linear correlation coefficient 

ranged from 0.007 to 0.691. The correlation coefficient was significant at the ro.os level 

for April, August, November, and December. However, it should be noted that for some 

months the linear correlation coefficients did not meet the correlation coefficients 95% 

confidence interval, which may be due to data outliers. For example, in September there 

is a chlorophyll-a concentration of 10 pg chi L'1 which appears to be an outlier compared 

to the other data. If this point is removed, the correlation coefficient increases to 0.653, 

which then meets the ro.os for a linear correlation. Even though the correlation coefficient 

was less than the ro.os for January, May, and June, the simulated estuarine profiles are
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within associated error bars of the data (Fig. 29). In addition, for January, May, and June 

the models confidence intervals were 76%, 80%, and 85%, respectively. Further 

confirming that although the ro.os for the correlation coefficient was not significant for 

January, May, and June, the model was able to simulate the observed phytoplankton 

concentrations for these months.

Model-simulated averages of chlorophyll-a were within the errors of the observed 

averages (Table 10), with the model under predicting for most of the months simulated 

(Fig. 29). For both the observed data and model simulations, the highest chlorophyll-a 

concentration occurred in May (6.0 ± 2.0 pg chi L'1 and 4.7 ±1.1 pg chi L'1, respectively). 

The yearly model simulated chlorophyll-a concentration was 2.4 ± 1.2 pg chi L'1, which 

agrees with the observed data (2.7 ±1.6 pg chi L'1). Model-derived chlorophyll-a 

concentrations were under predicting relative to the field data for eight of the nine months 

simulated (ranged from -0.27 to -1.39 pg chi L*‘; Fig. 29), but as indicated by the 

confidence interval these are low errors (Fig. 29). Excluding the month of October, the 

confidence interval ranged from 75% (November and December) to 93% in August (Fig. 

29), further showing that the model did simulate chlorophyll-a concentrations correctly.

Using the carbon to chlorophyll-a ratio of 51 mg C (mg chi)'1 (Cloem and Alpine, 

1991), the observed phytoplankton biomass in units of carbon in 1999 from the observed 

data was 138 ± 81 mg C m'3 (Table 10). The simulated phytoplankton biomass in units of 

carbon was 125 ± 61 mg C m'3, which is essentially identical to the observed 

phytoplankton biomass (units of carbon). These combined statistical analyses indicate 

that the model was able to predict the yearly variability of chlorophyll-a in the estuary.
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With respect to October, model generated phytoplankton concentrations in the 

Northern Reach deviated from the observed data at a salinity of 22 and greater. This 

corresponds to the mid-reach of San Pablo Bay and Central Bay (Fig. 5). A possible 

explanation for this deviation is that localized events (e.g., phytoplankton coming in from 

adjacent marshes) are causing the maximum or there are inputs from the South Bay (a 

third end member). If there was another end member, its effects should also be seen in 

the salinity, TSM and light attenuation profiles. As those figures showed the model had 

no problem predicting these profiles, the South Bay is probably not a source for these 

higher concentrations. Therefore, the only other possible explanation is a localized input. 

By examining the continual monitoring data from the USGS 

(http://sfbav.wr.usgs.gov/access/wQdata/webbib.html). the presence of higher 

chlorophyll-a concentrations like these observed in October are rare and the last time it 

was found was in 1994, and prior to that in 1991. The increase in chlorophyll-a could be 

due to a number of reasons including decreased grazing, phytoplankton inputs from 

adjacent marshes, and presence of atypical phytoplankton species (i.e., that have a higher 

optimal growth rate). Based on these results the deviation of the model from the 

observed phytoplankton biomass is probably due to localized events that cannot be easily 

simulated.

3.4.4. Dissolved Selenium

As discussed in Chapter I, dissolved selenium is introduced to the estuary via river 

water, refinery effluents, and oceanic exchange. The removal/production of selenium
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Table 11
Observed estuarine average dissolved selenium and particulate selenium concentrations for the Northern Reach of the San
Francisco Bay compared to simulated averages for the year 1999____________________________________________________

Year £ S e  Sc |V ScVI Org. Sc-II Part.£Se Sc IV+VI SeO Org.Se-H
(nmol L'1) (nmol L'1) (nmol L'1)______ ! ’ L 1)______ ' ‘ L 1)______I ‘ L 1) (nmol L 1) (nmol L 1)

Aoril 1999
Model 1.73 ±0.41 0.18 ±0.02 0.90 ±0.30 0.54 ± 0.09 0.16 ±0.06 0.05 ±0.02 0.05 ±0.02 0.04 ± 0.02
Observed 1.49 ±0.31 0.19 ±0.02 0.69 ± 0.26 0.60 ±0.37 0.20 ± 0.09 0.04 ± 0.03 0.06 ±0,03 0,I0±0.IQ

Nov 1999
Model 1.49 ±0.32 0.19 ±0.04 0.82 ± 0.23 0.49 ± 0.08 0.13 ±0.04 0.02 ±0.01 0.05 ± 0.02 0.04 ± 0.02
Observed 1.30 ±0.26 0.20 ± 0.04 0.84 ±0.16 0.30 ±0.16 0.15 ±0.08 0.05 ±0.03 0.04 ±0.02 0.07 ±0.09
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species is described in Chapter I with Equations 1.30 to 1.33. Average refinery input 

values are found in Appendix A, while the final parameter values needed in Equations 

1.30 to 1.32 are found in Table 9. Fitting could only be done for dissolved selenium in 

April and November 1999 (Cutter and Cutter, in prep.), when data were available.

Observed total dissolved selenium concentrations ranged from 1.0 nmol L'1 to 2.2 

nmol L‘*. In April, total dissolved selenium was conservative in the estuary, with higher 

concentrations in the riverine end member (Fig 30A). In November 1999, there was non

conservative production of total dissolved selenium in the mid-estuary (Fig. 31 A). 

Model-generated total dissolved selenium profiles reproduced the conservative behavior 

in April and the non-conservative behavior in November (Fig. 30A and Fig. 3 1 A, 

respectively). The correlation coefficient in April was 0.497, while in November it was 

0.814. These correlations are significant since they are greater than the ro.os critical level. 

The mean cumulative error in April was 0.00 nmol L 1, while in November the model 

over predicted total dissolved selenium by +0.19 nmol L*1. As a overall indication of how 

well the model fit was, the confidence interval was 99% of the observed concentrations in 

April and 86% in November (Fig. 30 A and 31 A). The simulated estuarine average was 

1.73 ± 0.41 nmol L'1 for April and 1.49 ± 0.32 nmol L'1 for November which was within 

the errors of the observed estuarine field data (1.49 ± 0.31 nmol L'1 for April and 1.30 ± 

0.26 for November; Table 11). Agreement between the observed and simulated estuarine 

averages and the high confidence interval demonstrates that model calibration of total 

dissolved selenium was good.

Selenite concentrations in April 1999 and November were low (range of 0.11 to
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Fig. 30. Dissolved selenium in the Northern Reach April 14, 1999. 
The observed data are from Cutter and Cutter (in prep.).
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Fig. 31. Dissolved selenium in the Northern Reach on November 10, 1999. 
Observed data are from Cutter and Cutter (in prep.).
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0.24 nmol L '1) and non-conservative (Fig. 30B and Fig 3 IB). Simulated selenite 

estuarine profiles show non-conservative behavior for the estuary (Fig. 30B and Fig.

3 IB). The correlation coefficient was 0.648 for April and 0.492 for November, and both 

were above the ro.os level of significance. Added confirmation that the model is 

predicting selenite concentrations accurately are the confidence intervals, which were 

92% for April and 90% for November. Observed estuarine average selenite 

concentrations were 0.19 ± 0.02 nmol L'1 (April) and 0.20 ± 0.04 nmol L'1 (November). 

Model-derived estuarine averages were 0.18 ± 0.02 nmol L'1 for April and 0.19 ± 0.04 

nmol L'1 for November indicating perfect agreement with the field data (Table 11). The 

model was under predicting selenite for both months, (M = -0.01 nmol L'1 in April and 

-0.02 nmol L'1 in November), but these are within 10% of the observed estuarine average. 

Therefore, calibration of model for selenite was successful.

Observed selenate concentrations were 3 times greater than selenite 

concentrations (Fig. 30C and Fig. 31C). In April, the selenate maximum was located 

where the San Joaquin River joins the Sacramento River (Fig. 30C), while in November 

the selenate maximum was located mid-estuary (Fig. 31C). Selenate was predominately 

conservative in the estuary for April, while it was non-conservative in November (Fig. 

30C and Fig. 31C, respectively). As with the selenite data, the correlation coefficient in 

April (r= 0.381) was lower than the ro.os (0.482), but the model was only slightly over 

predicting selenate (+0.13 nmol L '1; 13% off. Fig. 30C) with a confidence interval of 

83%. Furthermore, the observed estuarine averages were 0.69 ± 0.26 nmol L"1, while 

model-simulated averages were 0.90 ±  0.30 nmol L*1 (Table 11). In November, the
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correlation coefficient was 0.466 and is significant at the ro.os level. The model under 

predicts selenate (-0.02 nmol L '1; Fig. 31C), with a confidence interval of 98%. The 

observed selenate estuarine average was 0.84 ± 0.16 nmol L~l for November and the 

model-derived average was 0.82 ± 0.23 nmol L'1 (Table 11). Therefore, the above 

statistical parameters indicate that the model was able to accurately simulate selenate for 

the estuary.

Field data show that production of organic selenide was occurring in the estuary in 

April (Fig. 30D) and November (Fig. 3 ID). Elevated concentrations were located mid

estuary, with concentrations as high as 1.1 nmol L'1. Model simulations were able to 

reproduce this non-conservative production behavior of organic selenide in the estuary 

(Fig. 30D and Fig. 3 ID). In April, the simulated organic selenide concentration was 

lower than the observed mid-estuary maximum (M = -0.09 nmol L '1; 75% confidence 

interval), while in November the model was overestimating the organic selenide 

maximum (M = +0.08 nmol L'1, 75% confidence interval). The correlation coefficient 

between the observed and the simulated data was significant at the ro.os for November 

(r = 0.779) and April (r=0.525). The model-derived averages of 0.54 ± 0.09 nmol L'1 

(April) and 0.49 ± 0.08 nmol L '1 (November) were similar to the observed field data (0.60 

± 037 nmol L l for April and 0.30 ± 0.16 nmol L l; Table 11). For both November and 

April, statistical tests indicate that the fits between model-derived organic selenide 

concentrations and observed concentrations were good. Overall model calibrations for 

dissolved selenium and its speciation appear to be effective in simulating their behavior.
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Fig. 32. Particulate selenium in the Northern Reach April 14, 1999. 
Observed data are from Doblin et al. (in prep.).
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3.45. Suspended Particulate Selenium

Particulate selenium in the water column is due to sediment resuspension, riverine 

inputs, and in situ production (see Chapter I). The sensitivity analysis (Section 3.3) found 

that it is the most difficult constituent to simulate due to the large number of variables 

that can affect the model output. Particulate selenium was simulated in the model with 

Equations 1.34 through 1.41, and parameter values are found in Table 9. During 

calibration, an estuarine profile of sedimentary selenium concentrations was defined for 

each selenium species based on the findings from Section 2.3 (Appendix A) and used in 

Equation 1.34 to 1.41 forBEPS.

Observed total particulate selenium concentrations in April and November were 

similar (Fig. 32A and Fig. 33 A respectively), and ranged from 0.09 nmol L '1 to 0.31 nmol 

L'1. The particulate selenium maximum was located in the same region as the TSM 

maximum. Model-generated estuarine profiles of particulate selenium were consistent 

with the observed data in April (Fig. 32A) and November (Fig. 33A). The correlation 

coefficients for both April and November were low (r = -0.058 in April and r = 0.375 in 

November) and below ro.os level. As noted above, low correlation coefficients can be due 

to outliers and invariance in the data. In these cases, other statistical criteria are more 

appropriate for determining how well the model fits the data. In April, the simulated total 

particulate selenium concentrations have an 85% confidence interval, while in November 

it was 82 %. The model was under predicting total particulate selenium (M = -0.03 nmol 

L '1 in April and -0.02 nmol L'1 in November), and these are only 15 and 13% off the
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observed, respectively. Model-derived estuarine averages were 0.16 ± 0.06 nmol L'1 in 

April and 0.13 ± 0.04 nmol L*1 in November, which were within the errors of the 

observed data (0.20 ± 0.09 nmol L '1 for April and 0.15 ± 0.08 nmol L'1 for November; 

Table 11). Therefore, these combined statistical measurements indicate that the model 

was accurately able to simulate total particulate selenium.

Observed particulate selenite + selenate concentrations were very low in April 

(Fig. 32B) and November 1999 (Fig. 33B), with an estuarine average concentration of 

0.04 ± 0.02 nmol L '1 and 0.05 ± 0.03 nmol L l, respectively. The field data show higher 

concentration in the upper estuary that corresponds to the location of the TSM maxima. 

Simulated particulate selenite + selenate profiles were within the errors of the observed 

data (Fig. 32B and Fig. 33B), and the reported correlation coefficient for April (r = 0.592) 

was above the ro.os- The confidence interval was 89% and the observed estuarine average 

(0.04 ± 0.03 nmol L'1) and the model-generated estuarine average (0.05 ± 0.02 nmol L l; 

Table II) agreed. However, for November the correlation coefficient was 0.143 and 

below ro.os confidence. Even though the correlation coefficient appears to be 

insignificant, the confidence interval in November was 75%, the mean cumulative error 

was low (M = -0.01 nmol L*1, Fig. 33B), and model-derived selenite + selenate averages 

(0.02 ±0.01 nmol L 1) was similar to the observed average (0.05 ±0.01 nmol 

L 1). Based on these analyses and considering the sensitivity analyses showed this to be 

difficult to parameterize, the model appears to generate accurate particulate selenite + 

selenate estuarine profiles.

According to Equation 1.34, elemental selenium can only be generated by
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sediment resuspension (BEPS) and riverine inputs (PSM). Observed elemental selenium 

concentrations were observed to be higher in April than in November (Fig. 32C and Fig. 

33C, respectively), which was expected because the TSM in April was higher. Estuarine 

averages for elemental selenium in the water column were 0.06 ± 0.03 nmol L'1 for April 

and 0.04 ± 0.02 nmol L '1 in November (Table 11). Model-derived elemental selenium 

concentrations for both months were within the errors of the observed data (0.05 ± 0.02 

nmol L'1 for April and 0.05 ± 0.02 nmol L '1 for November; Table 11). The model derived 

salinity plots of elemental selenium were similar to the field data, and the correlation 

coefficients were 0.622 for April and 0.497 in November. Both of these correlation 

coefficients are significant at the 95 % confidence (ro.os)- In April, the model was able to 

predict 98% of the elemental selenium concentrations (Fig. 32C), while in November it is 

able to predict 85% of the observed variability (Fig. 33C). For both months, the model 

was over predicting elemental selenium concentrations (M = +0.01 nmol L 1. Fig. 32C 

and Fig. 33C). Thus, the combined statistical analyses found that parameter calibration of 

the model was successful for elemental selenium.

Particulate organic selenide concentrations varied significantly between April and 

November (Fig. 32D and Fig. 33D). Simulated particulate organic selenide 

concentrations were able to reproduce the observed estuarine profile (Fig. 32D and Fig. 

33D). The correlation coefficient for April (r = -0.484) was significant at the ro.os 

confidence level, while the correlation coefficient in November was not significant 

(r = -0.061). However, the confidence interval in November was 75% and the observed 

estuarine average of 0.07 ±  0.10 nmol L'1 agreed with the model-generated average (0.04
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± 0.02 nmol L l; Table 11). Mean cumulative errors were low compared to the errors on 

the observed data and showed that model simulations were under predicting particulate 

organic selenide for both months (M = -0.03 nmol L'1 in April and M = -0.02 nmol L'1 in 

November). The observed estuarine average in April was 0.10 ± 0.10 nmol L*1, similar to 

the model-generated estuarine averages (0.04 ± 0.02 nmol L‘’;Table 11). Based on the 

above statistical analysis model parameterization for particulate organic selenide 

concentrations were successful.

As an additional check of the model performance, the model-generated uptake of 

selenium by phytoplankton can be compared to observed selenium concentrations in 

phytoplankton. Doblin et al. (in prep.) found that for cultures of phytoplankton native to 

the San Francisco Bay, the atomic ratio of selenium to carbon ranged from 0.7 to 4.4 

x 10-6, with an average of 3.2 ± 6.2 x 10"6. The model-derived phytoplankton selenium 

to carbon atomic ratios ranged from 0.9 to 12 x 10-6 for both April and November 

(combined average 5.6 ± 2.3 x I O'6), which agrees with those observed by Doblin et al.

(in prep.). Therefore, the uptake of dissolved selenium using the rate constants of Riedel 

et al. (1996) appears to generate similar selenium to carbon ratios found in phytoplankton 

from the San Francisco Bay.

To evaluate whether the modeled selenium concentrations on the particles 

themselves (pg g 1) are comparable to observed values, the modeled particle selenium 

concentration (nmol L 1) was divided by the total suspended material concentration (mg 

L 1). Doblin et al. (in prep.) reported that in April and November, particle associated 

selenium ranged from 0.2 pg g l to 1.6 pg g 1, with an average of 0.63 ± 0.40 pg g '1 in
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April and 0.74 ± 0.27 pg g '1 in November. The selenium concentration associated with 

particles for the model were 0.35 ± 0.16 pg g '1 in April and 0.64 ±  0.19 pg g '1 in 

November, which both fall within the errors of the observed values. Model-generated 

particle associated selenium may be lower in April than the observed data since the model 

was over predicting TSM.

3.5. CONCLUSIONS

The equations used in Chapter I were able to simulate the variability of salinity, 

TSM, and phytoplankton biomass within the estuary. Furthermore, the calibration of the 

model to the dissolved and particulate selenium concentrations under high (April) and 

low (November) flow conditions was successful; the full set of optimized parameters are 

in Table 9. Some of the discrepancies that were found between the simulation and the 

observed data can be explained by: (1) simulations were run for the day of interest at 

midnight, while it takes 2 days to collect samples (averaging problem); (2) localized 

effects were not included (e.g., wind forcing); (3) negative discharge flows for the San 

Joaquin (i.e.. Delta withdrawals greater than actual flow rates) were ignored; (5) large 

errors in the observed data; and (6) data missing along the salinity gradient (e.g., the 

month of May where there were only 7 stations for salinity, TSM, and phytoplankton 

concentrations). With successful calibration, the model can be validated to other 

environmental conditions (Chapter IV).
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CHAPTER IV

MODEL VALIDATION AND PREDICTIVE MODELING

4.1. INTRODUCTION

The underlying principle in validating, or verifying, a model is to test if the 

calibrated model can simulate the observed behavior of a constituent for years other than 

that used for calibration (Schlesinger et al., 1979; Klemes, 1986). Model validation 

involves keeping the parameters used to calibrate the model unchanged, while applying 

the model to different sets of environmental conditions to determine its accuracy (Canale 

et al., 1995). A model is "truly" validated when model simulations match the 

observations (Canale et al., 1995). Often model validation is impossible to accomplish 

because independent sets of data are not available (Canale et al., 1995). When a 

sufficient set of data is available, the data can be split and a subset used to validate the 

model (Omlin et al., 2001). Splitting the observed data is known as predictive validation 

(Power, 1993) and is useful when the objective of the model is to be able to predict future 

scenarios. In the San Francisco Bay, dissolved and particulate selenium samples have 

been measured in 1986. 1987, 1988, 1997, 1998, and 1999. The dissolved and particulate 

data were split so that calibration of the model was done on data from 1999 (Chapter HI), 

and validation of the model was done using the other data.

Not only are more field data needed in order to validate a model, but the field data 

must also represent a variety of environmental conditions (Canale et al., 1995). Based on 

river discharge from the Delta into the Bay, 1986, 1997, and 1998 were wet years
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(summer discharge was greater than 400 m3 s '1), 1987 was dry (summer discharge was 

greater than 120 m3 s '1 but less than 200 m3 s '1), and 1988 was a drought year (summer 

discharge was less than 120 m3 s'1). Thus, a variety of discharge conditions are available 

for proper validation. Furthermore, from 1986 to 1998 there have been a change in the 

selenium speciation and discharge rate from the refineries (predominately selenite in 1986 

and selenate in 1998, 1999; Appendix A). Changes in the biological structure of the 

system have also occurred due to the introduction of the filter-feeding bivalve 

Potomocorbula amurensis (Cloem and Alpine, 1991). Prior to 1986, the main control on 

phytoplankton populations was zooplankton grazing (Cloem et al., 1985). Cloem and 

Alpine (1991) proposed that prior to 1987, even with the presence of the native clam Mya 

arenaria, the benthic grazing had little effect on the phytoplankton biomass. Because the 

observed data were collected under a variety of environmental conditions, predictive 

validation of the model can be done. Once the model is validated, it can be used to make 

predictions about the future state of selenium in the Northern Reach of the San Francisco 

Bay.

4.2. METHODS

For validating the model, river discharge for each simulation was obtained from 

the Interagency Ecological Program (www.iep.ca.gov). as discussed in Chapter I.

Refinery discharge rates were obtained from the San Francisco Bay Regional Water 

Quality Control Board (personal communication), while the speciation data were obtained 

from Cutter ( 1989b) and Cutter and Cutter (in prep.; see Appendix A for the daily
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refinery fluxes into the Bay). For the simulation in 1986, the benthic grazing term was 

negligible based on observations by Cloem and Alpine (1991). Other than these changes, 

the rest of the parameters defined in Table 9 were used.

In model calibration discussion (Chapter III), the linear correlation coefficient, 

mean cumulative error, observed and simulated estuarine mean, and the confidence 

interval were computed (see Section 3.2.3 for background information). In brief, the best 

fit is when the linear correlation coefficient is significant at the ro.os level (95 % 

confidence), the mean cumulative error is low and the confidence interval is 75% or 

greater, and the estuarine averages agree. However, if the correlation coefficient is 

insignificant at the ro .o s, a reasonable fit can still exist if the other conditions are met. 

When the statistical parameters demonstrate that the model was able to reproduce the 

observed data for a majority of the years simulated, then model validation was considered 

successful.

4 3 . VALIDATION RESULTS AND DISCUSSION

The observed data for dissolved selenium were collected using two different 

sampling techniques. Data collected in 1986, 1997, 1998 followed the salinity gradient 

so that integrated biogeochemical processes could be observed. For these samples, 

salinity, TSM, chlorophyll-a, and dissolved and particulate selenium samples were taken. 

However, in 1987 and 1988 samples were obtained using an Eulerian approach and 

stations were at fixed locations in the San Pablo to Suisun Bays (Cutter and San Diego- 

McGlone, 1990). These stations were specifically sited to maximize selenium "signals"
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from refinery inputs to the Bay (Cutter and San Diego-McGlone, 1990). Furthermore, 

there were no TSM, chlorophyll-a concentrations, or particulate selenium samples taken. 

Another potential problem with the 1987-1988 data is that there were no end member 

samples (both river and seaward). Even though these problems in the 1987-1988 data 

exist, model simulations were run for all years data were collected.

In order to present an in-depth discussion on model-derived selenium 

concentrations, the selenium results will be split according to the sampling strategy used. 

The first discussion will focus on data from the salinity gradient sampling. To simplify 

the presentation of results, only 1998 simulations will be shown: the remaining validation 

data are in Appendix C. This year was chosen because dissolved and particulate selenium 

speciation data were available for high flow and low flow months. The second discussion 

will focus on model-simulated dissolved selenium concentrations for May 1988 when 

samples were taken using the Eulerian approach. This month was chosen over those in 

1987 because it represents an extreme flow condition (a drought year). Model-derived 

simulations for all of the Eulerian samplings are located in Appendix C.

43.1. Salinity, TSM and Phytoplankton Validations

The salinity, phytoplankton, and TSM data for 1998 were obtained from Cutter 

and Cutter (in prep.) and Doblin et al. (in prep.). The observed salinity varied from zero 

at the riverine end member to 33 at the Golden Gate (Fig. 34). Model-derived salinity 

profiles were able to accurately reproduce the estuarine salinity distributions (Fig. 34).

The correlation coefficient in June 1998 was 0.974 and 0.960 in October 1998, which are
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significant at the ro.oi confidence level. For both months, the mean cumulative errors 

indicate that the model is over predicting salinity (M = +0.13 nmol L '1 June and 

M = +0.08 nmol L'1 October), however the confidence interval is 80% (June) and 86% 

(October). The estuarine average salinity was not used in determining the fit of the model 

because it has large errors. Table 12 shows that the model was valid for salinity in all 

years simulated. As a result, all remaining figures will be plotted against salinity so that 

removal/production processes can be seen.

Table 12
Summary of validation results for all years for salinity simulations
Year Correlation

Coefficient
to.oi M* Confidence 

Interval (%)
April 23, 
1986

0.966 0.623 -0.07 92

September 
23, 1986

0.995 0.561 +0.06 95

October 8, 
1987

0.979 0.661 -0.08 96

December 
7,1987

0.894 0.623 -2.77 79

March 15, 
1998

0.952 0.606 -0.27 80

May 11, 
1998

0.979 0.590 +0.35 97

November 
6, 1997

0.984 0.449 -0.83 86

June 12, 
1998

0.974 0.590 +0.13 80

October 12, 
1998

0.960 0.537 +0.08 86

* a (-) sign indicates model was under predicting relative to the observed, while a ”+" 
sign indicates model was over predicting
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Fig. 34. Salinity, TSM, and phytoplankton biomass in the Northern Reach for 
June 14, 1998 and October 12, 1998. Observed data for salinity are from 
Cutter and Cutter (in prep.), with observed TSM and chlorophyll-a 
concentrations from Doblin et al. (in prep.).
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The observed TSM showed a maxima in the upper reaches of the estuary, and 

model simulations reproduced these maxima (Fig. 34). The correlation coefficient in 

June was 0.527 while in October it was 0.879, which are significant at the ro.os level. 

Model-generated estuarine average TSM’s were 47 ± 21 mg L'1 in April and 20 ± 14 mg 

L'1 in October and agree with observed estuarine averages (32 ± 20 mg L'1 in April and 

19 ± 11 mg L'1 in October; Table 13).

Table 13
Summary of validation results for all years of TSM simulations

Correlation
coefficient

ro.os M*
(mg L'1)

Cl
(%)

Observed 
Average 
(mg L 1)

Model 
Average 
(mg L*1)

April 23, 
1986

0.678 0.497 +2.8 93 40 ±14 43 ±25

September 
23,1986

0.626 0.456 -3.5 86 29 ± 16 32 ±13

November 6, 
1997

0.589 0.433 +1.1 96 13 ± 6 14 ± 2

June 12, 
1998

0.527 0.468 +8.3 74 32 ± 20 47 ±21

October 12. 
1998

0.879 0.788 -1.3 96 19± 11 20 ±14

* a (-) sign indicates model was under predicting relative to the observed, while a "+" 
sign indicates model was over predicting

The model under predicted in October by -1.3 mg L'1, which results in a confidence 

interval of 96%, while in June it over predicts by +8.3 mg L'1 and the confidence interval 

in June of 1998 was 74%. Even though the confidence interval in June was lower than 

75%, since the estuarine averages agree and the correlation coefficient is significant, the 

ability of the model to accurately predict TSM for this month is considered reasonable.
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Model-derived TSM were similar to the observed TSM for all the years that data were 

collected (Table 13), and model validation for TSM is complete.

Phytoplankton chlorophyll-a concentrations in 1998 showed higher concentrations 

in the upper estuary (Fig. 34). The correlation coefficient was low for both June 

(r=0.207) and October (r =0.095) and were not significant. However, the mean 

cumulative errors were low (+0.65 pg chi L'1 in June and +0.41 pg chi L '1 in October) 

and the resulting confidence intervals were 75% (June) and 78% (October). Furthermore, 

model-derived estuarine averages (3.2 ± 0.3 pg chi L'1 for June and 2.8 ± 0.3 pg chi L'1 

for October) were similar to observed averages in both June and October (2.6 ± 0.8 pg chi 

L’1 for June and 2.4 ± 0.3 pg chi L*1, respectively; Table 14).

Table 14
Summary of validation results for all years of phytoplankton simulations

Correlation
coefficient

10.05 M*
(pg chi L*1)

a

(%)
Observed 
Average 

(pg chi L'1)

Model 
Average 

(pg chi L*‘)
April 23, 
1986

0.789 0.497 +0.97 84 7.3 ±1.4 8.0 ±2.7

September 
23,1986

0.635 0.456 +0.71 79 3.9 ± 1.7 4.3 ±1.3

November 
6, 1997

0.469 0.433 -0.24 81 1.4 ±0.5 1.3 ±0.4

June 12, 
1998

0.207 0.468 +0.65 75 2.6 ±0.8 3.2 ±0.3

October 12, 
1998

0.095 0.788 +0.41 78 2.4 ±0.3 2.8 ±0.3

*a (-) sign indicates model was under predicting relative to the observed, while a "+" sign 
indicates model was over predicting
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Fig. 35. Dissolved selenium for the Northern Reach on June 14, 1998. 
Observed data were obstained from Cutter and Cutter (in prep.).
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Model-generated phytoplankton concentrations were similar to the observed data for all 

years simulated (Table 14), and thus the calibrated model was able to simulate 

chlorophyll-a concentrations for different environmental conditions.

4 3 2 . Dissolved Selenium Validations: Salinity Gradient Sampling

Total dissolved selenium in the estuary during 1998 was conservative in June 

(Fig. 35A) and non-conservative in October (Fig. 36A). Model simulations were able to 

reproduce the conservative and non-conservative behavior of total selenium for both 

months (Fig. 35A and Fig. 36A). In June the correlation coefficient was 0.445, while in 

October it was 0.613. The correlation coefficient was not significant for June, but it may 

be due to an outlier (e.g. 3.9 nmol L' 1 at the fresh water end member; Fig. 36A). Model

generated total selenium concentrations plotted against observed concentrations (Fig. 37) 

supports the interpretation that the observed value of 3.9 nmol L' 1 may be an outlier. If 

this data point is then omitted, the correlation coefficient increases to 0.788, which is 

significant at the ro.05 level. The confidence interval for June was 96% (M was over 

predicting by +0.06 nmol L*1) and the model-simulated estuarine average (2.29 ± 0.74 

nmol L 1) agreed with observed averages (2.28 ± 0.64 nmol L '1), showing that the model 

was able to simulate total dissolved selenium in June. The correlation coefficient for 

October (0.613) was above the ro.05 significance level, and while model-generated total 

dissolved selenium concentrations were lower than the observed concentrations (M = - 

0.11 nmol L'1), the confidence interval was 93%. Observed estuarine averages (1.50 ±  

0.30 nmol L '1) are
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Fig. 36. Dissolved selenium in the Northern Reach on October 12, 1998. 
Observed data were obtained from Cutter and Cutter (in prep.).
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similar to the model-derived average (1.33 ± 0.48 nmol L '1). Therefore, for 1998 model 

validation for total dissolved selenium was accomplished. Table 15 shows that the model 

was able to accurately predict total dissolved selenium in the estuary for all cruises that 

followed the salinity gradient, and thus the model is valid for total dissolved selenium.

Table 15
Model validation of dissolved selenium and its speciation for samples that were taken 
following a salinity gradient_______________________________________________

Correlation
coefficient

f0.Q5 M*
(nmol L'1)

Cl
( % )

Observed 
Average 

(nmol L ')

Model 
Average 

(nmol L ')
April 23. 1986

Total selenium 0.791 0.497 -0.18 91 2.17 ±0.61 2.05 ±0.60
Selenite 0.902 0.497 -0.02 95 0.40 + 0.13 0.36 ±0.15
Selenate 0.832 0.497 -0.25 76 1.18 ±0.60 1.16 ±0.48
Organic selenide 0.319 0.553 -0.05 92 039  ± 0.33 0.55 ±0.10

SeDtember 23.
1986 0.882 0.444 -0.16 92 2.17 ±0.52 1.98 ±0.53
Total selenium 0.946 0.444 -0.13 85 0.78 ± 0.40 0.69 ±0.35
Selenite 0.296 0.444 -0.06 91 0.77 ±0.23 0.75 ±0.23
Selenate 0.576 0.456 -0.02 96 0.62 ±0.13 0.54 ±0.10
Organic selenide 

November 6. 1997
Total selenium 0.550 0.482 -0.22 91 2.43 ±0.63 2.13 ±0.66
Selenite 0.551 0.468 -0.08 87 0.54 ± 0.24 0.45 ±0.22
Selenate 0.622 0.456 -0.48 63 1.28 ±0.44 0.79 ±0.25
Organic selenide 0.525 0.468 +0.25 60 0.63 ± 0.47 0.89 ± 0.39

June 12. 1998
Total selenium 0.445 0-553 +0.06 96 2.28 ± 0.64 2.29 ± 0.74
Selenite -0.096 0-553 -0.00 99 0.26 ±0.08 0.23 ±0.07
Selenate 0-574 0.553 +0.38 75 1.36 ±0.24 1.44 ±0-55
Organic selenide 0-532 0.576 +0.03 80 0.65 ± 0-50 0.63 ±0.15

October 12. 1998
Total selenium 0.613 0.433 -0.11 93 1.50 ±0.30 133 ±0.48
Selenite 0.688 0.433 -0.06 81 0.32 ±0.07 0.25 ±0.09
Selenate 0.589 0.433 -0.19 77 0.87 ±0.14 036 ± 0.27
Organic selenide 0.607 0.433 +0.13 63 0.34 ±0.26 031 ±0.12

* a (-) sign indicates model was under predicting relative to the observed, while a 
sign indicates model was over predicting
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Selenite concentrations in the estuarine ranged from 0.2 nmol L'1 to 0.5 nmol L*1 and 

were non-conservative (Fig. 35B and Fig. 36B). The model was able to predict the non- 

conservative behavior of selenite (Fig. 35B to Fig. 36B). As indicated earlier, the 

correlation coefficient sometimes is not a good indicator of fit due to little variation in the 

observed data or the presence of outliers. In June 1998, the correlation coefficient was 

-0.096 (Fig. 35B), which is not significant. Nevertheless, the mean cumulative error was 

0.00 nmol L '1 and the confidence interval was 99%, indicating a fit between the model 

and field data. Furthermore, the model-generated estuarine average (0.23 ± 0.07 nmol L' 

l) is very similar to the observed estuarine average (0.26 ± 0.08 nmol L 1), thus 

confirming that the model was able to simulate selenite for June. The correlation 

coefficient (0.688) in October was significant at the ro.os level. The model under 

predicted selenite by -0.06 nmol L 1, but the model could predict 81% of the observed 

selenite. Observed estuarine means (0.32 ± 0.07 nmol L'1) and simulated means (0.25 ± 

0.09 nmol L '1) agreed with each other as more evidence that the model was able to predict 

selenite concentrations. Additionally model-derived selenite concentrations agreed with 

the observed data for 1986, 1997, and 1998 (Table 15) further showing that the model 

could simulate selenite estuarine profiles for other years, confirming model validation for 

selenite.

Observed selenate concentration varied from 1.0 nmol L'1 to a maximum of 2.0 

nmol L'1 (Fig. 35C and Fig. 36Q. Selenate was conservative in June 1998 (Fig. 35C) and 

non-conservative in October 1998 (Fig. 36C). Estuarine simulated profiles produced the 

observed conservative (June, Fig. 35C) and non-conservative behavior (October, Fig.
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36C). The correlation coefficient in June was 0.574, while in October it was 0.589 (Fig. 

35C and Fig. 36C) and both are significant at the ro.os level. Model-predicted selenate 

concentrations may appear high in June (M =+0.38 nmol L '1), but normalized to the mean 

the model predicts 75% of the observed data. Selenate concentrations were lower than 

the observed values (M =-0.19 nmol L'1) for October, but the confidence interval was 

77%. To further support validation of selenate, the observed estuarine averages (1.36 ± 

0.24 nmol L'1 for June and 0.87 ± 0.14 nmol L'1 for October) agree with the model- 

derived averages (1.44 ± 0.55 nmol L'1 in June and 0.56 ± 0.27 nmol L'1 in October;

Table 15). The statistical analysis of model-derived concentrations versus observed 

concentrations, show that the model can predict the observed selenate behavior for all 

periods (Table 15). Therefore, the model was able to predict the observed behavior of 

selenate under a variety of environmental conditions.

The dissolved organic selenide estuarine average was greater in June (0.65 ± 0.50 

nmol L'1) than that in October (0.34 ± 0.26 nmol L '1). Dissolved organic selenide 

concentrations varied from non-detectable to approximately 2.0 nmol L'1 and displayed 

non-conservative behavior in the estuary, which the model was able to simulate (Fig. 35D 

through Fig. 36D). Simulated estuarine averages were 0.63 ±0.15 nmol L'1 (June) and 

0.51 ±0.12 nmol L '1 (October), which are within the errors of the observed means. For 

both months, the model was over predicting organic selenide (M = +0.03 nmol L 1 for 

June and M = +0.13 nmol L'1 for October), but had confidence intervals of 80% (June) 

and 63% (October). Even though the confidence interval in October is slightly lower than 

normally observed, the correlation coefficient is high (0.607) and is significant at the ro.os
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Fig. 38. Dissolved selenium in the Northern Reach on May 11, 1998. 
The observed data were from Cutter and San Diego-McGlone (1990).
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level. For June, the correlation coefficient was 0.532. which is slightly lower than the 

r o . 0 5  criteria needed to state that the correlation is significant. However, the other 

statistical parameters indicate that the model-predicted concentrations were similar to the 

observed data. Not only was the model able to predict dissolved organic selenide for 

1998, but it was also able to predict it for 1986 and 1997 (Table 15 and Appendix C). 

Therefore, the model was also able to simulate the observed organic selenide 

concentrations under a variety of environmental conditions.

4 3 3 . Eulerian Validations

As discussed above, the samples from 1987 and 1988 were Eulerian 

measurements. Table 12 shows that the model was able to simulate the salinity for these 

years (also see Appendix C). Even though the model could accurately simulate salinity 

for this time period, it may be more difficult to simulate dissolved selenium since the 

stations were positioned to highlight the effects of refinery outputs (Cutter and San-Diego 

McGlone, 1990). May 11. 1998 will be used to compare model output to the observed 

data for Eulerian selenium samples, with the other simulations found in Appendix C and 

a summary of their results in Table 16.

The input from the refineries was the mean concentration as determined by Cutter 

( 1989b) and Cutter and Cutter (in prep.). The variability of selenium discharge from the 

refineries was quite large. For example, in 1988 the total dissolved selenium discharged 

from Shell was 972 ± 557 nmol L'1 (Cutter, 1989b). For the May 1988 validation (Fig. 

38), the mean concentrations for each species in refinery discharge were used, but the
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Table 16
samples

Correlation
coefficient

tb.os M*
(nmol L'1)

a
(%)

Observed 
Average 

(nmol L'1)

Model 
Average 

(nmol L"1)
October 8, 1987
Total selenium 0368 0.514 -0.12 96 2.76 ± 0.60 2.40 ± 0.66
Selenite 0.543 0314 +0.06 95 1.16 ±0.41 0.83 ±0.33
Selenate 0361 0332 -0.35 72 1.25 ±0.80 0.93 ±0.23
Organic selenide 0.111 0.707 +0.01 98 0.67 ± 0.35 0.64 ±0.16

December 17. 1987
Total selenium 0.194 0332 +0.22 90 2.24 ± 0.46 2.37 ±0.63
Selenite 0355 0353 +0.03 94 0.98 ± 0.29 1.02 ±0.40
Selenate -0.078 0332 -0.17 80 0.81 ±0.34 0.73 ± 0.23
Organic Selenide -0.066 0.632 +0.10 70 0.45 ±0.23 0.62 ±0.15

March 15. 1998
Total selenium 0.991 0.497 +0.03 99 2.43 ± 0.57 2.24 ± 0.83
Selenite 0.890 0.497 +0.01 98 0.90 ±0.34 0.78 ±0.37
Selenate 0.497 0.497 -0.10 90 1.03 ±0.36 0.93 ±0.32
Organic Selenide 0.625 0.707 +0.09 80 0.50 ±0.14 034  ±0.16

Mav 11. 1998
Total selenium 0389 0.497 +0.06 97 2.64 ± 034 2.66 ±0.64
Selenite 0.807 0.497 -O.tl 89 1.08 ±0.40 1.03 ±0.35
Selenate 0.197 0.497 -0.13 87 1.09 ±0.37 1.01 ±0.24
Organic Selenide 0.110 0.707 +0.11 76 0.47 ±0.27 0.61 ±0.14

* a (-) sign indicates model was under predicting relative to the observed, while a ' 
model was over predicting
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model could not successfully predict total dissolved selenium and its speciation (low 

correlation coefficient, low confidence interval). Specifically, the mean cumulative errors 

indicated that the model was under predicting the concentrations relative to the observed 

data (Fig. 38). According to the sensitivity results, river discharge and refinery inputs 

largely control the model output of dissolved selenium (Section 3.3). During this 

sampling period, the water input from the Sacramento River was low due to drought 

conditions (average discharge was 174 m3 s'1 in May) and thus the riverine inputs would 

be minor compared to the refinery inputs. Because the field sampling was designed to 

highlight/maximize the effects of refinery outputs, model simulations were run to 

examine what the predicted estuarine concentrations would be if the refinery 

concentrations of selenium were increased by 10% from the mean; this is well within the 

observed variability (Appendix A).

Increasing the concentration of selenium in the refinery effluent by only 10% 

resulted in a more accurate model simulations relative to the observed data. In May 1998 

total dissolved selenium was non-conservative (Fig. 39A) and the model was able to 

simulate this behavior (Fig. 39 A). The correlation coefficient was 0.589 for total 

dissolved selenium and it was significant at the ro.os level. The model over predicted total 

selenium (+0.06 nmol L'1), which was low relative to the mean and thus the confidence 

interval was 97%. The observed estuarine average of total selenium in May was 2.64 ± 

0.54 nmol L '1, while the simulated estuarine average was well within the errors of the 

observed data (2.66 ± 0.64 nmol L'1). Model-derived total dissolved selenium for the 

other Eulerian samples suggests that when the refinery fluxes were increased 10% above
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Fig. 39. Dissolved selenium in the Northern Reach on May 11, 1988 by 
increasing refinery input by 10%. Observed data were obtained from 
Cutter and San Diego-McGIone (1990).
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their means the model could predict the observed behavior (Table 16).

Selenite was the dominant species in 1988 with a mid-estuary maximum (Fig. 

39B). Again using the 10% increased refinery flux, model-generated selenite 

concentrations produced the non-conservative behavior of selenite (Fig. 39B). The 

correlation coefficient was 0.807, which was significant at the ro .os level. Furthermore, 

the mean cumulative error was -0.11 nmol L'1, which results in a confidence interval of 

89%. The simulated average selenite concentration in the estuary was 1.03 ± 0.35 nmol 

L'1, and is similar to the observed mean (1.08 ± 0.40 nmol L'1). Based on these statistical 

analyses the model was able to predict selenite in 1988. Table 16 shows that the model 

was also able to generate selenite concentrations that agreed with the observed data for 

the remaining 1987-1988 samplings.

The estuarine average selenate concentration was 1.09 ±0.37 nmol L'1 and was 

non-conservative in the estuary (Fig. 39C). The linear correlation coefficient was low 

(0.197) and not significant at the ro.os level. This could be due to little variation in the 

observed data, and thus when the model-derived concentration is plotted against the 

observed data (Fig. 40) it was found that the model was not able to reproduce the 

variability observed in the real data. However, the confidence interval was 87% (M= 

-0.13 nmol L 1) and the model-derived mean (1.01 ±0.24 nmol L 1) was similar to above 

average. The high confidence interval and agreement between the observed and 

simulated averages show that the model is able to simulate similar selenate concentrations 

observed in the estuarine when samples were collected using Eulerian methods s.
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Fig. 40. Plot of model-derived selenate and observed selenate. 
The possibility of non-linear behavior could be due to little 
variation in the data.
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Like inorganic selenium, dissolved organic selenide was non-conservative in the estuary 

in May 1988 (Fig. 39D). The observed estuarine average was 0.47 ±0.27 nmol 

L 1. Model-derived organic selenide concentrations had an estuarine average of 0.61 ± 

0.14 nmol L'1, which was similar to the observed average. The model was also able to 

simulate the non-conservative behavior of organic selenide (Fig. 39D), but the linear 

correlation was low (0.110) and non-significant. Due to the low mean cumulative error 

(+0.11 nmol L l), which results in a 76% confidence interval, and the agreement between 

the means, a reasonable fit between model simulations and observed concentrations was 

found. For the other simulations (Table 16), the model was able to predict the observed 

organic selenide concentrations. In summary, the calibrated model was able to simulate 

concentrations similar to the observed data collected using an Eulerian approach, as well 

as for those samples taken following the salinity gradient.

43.4 . Particulate Selenium Validations

Cutter (1989b) measured total particulate selenium concentrations in April and 

September of 1986, and Doblin et al. (in prep.) sampled in November 1997, June 1998. 

and October 1998. Doblin et al. (in prep.) also determined the speciation of particulate 

selenium in the water column. As with dissolved selenium, the discussion will focus only 

on the 1998 data since they represent both flow periods, and the model simulations for the 

other years can be found in Appendix C.

Total particulate selenium concentrations ranged from 0.1 nmol L~l to 0.3 nmol
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M = -0.02 nmol L' 
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n
0.00
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Cl = 80 %
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r = 0.211
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Fig. 41. Particulate selenium in the Northern Reach on June 14, 1998. 
Observed data were from Doblin et al., (in prep.).
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L*1 (Fig. 41A and Fig. 42A). Total particulate selenium maxima were located in the 

upper estuary, corresponding to where the TSM maxima were located (Fig. 34). Model- 

derived total particulate selenium concentrations were able to reproduce the upper 

estuarine maxima (Fig. 41A through 42A). The linear correlation for October was 

significant (0.623) at the ro.os level, while the one in June was not (0.425). However, 

even though the correlation was low, the model was only slightly over predicting total 

particulate selenium (M =+ 0.03 nmol L '1), the confidence interval was 76%, and the 

derived estuarine average of 0.19 ± 0.01 nmol L'1 was very similar to the observed 

average (0.13 ± 0.07 nmol L'1). These statistical analyses show that the model was able 

to predict total dissolved selenium in June even though the correlation coefficient was 

low. For October, the model under predicted by -0.03 nmol L'1, which results in a 78% 

confidence interval. The observed estuarine average concentration (0.13 ±0.03 nmol L '1) 

and the model-generated average (0.14 ± 0.06 nmol L 1) were within errors of each other. 

Overall, the model was able to simulate total particulate selenium concentrations for this 

year and the other years (Table 17), and since the statistical requirements were met, the 

model was validated for total particulate selenium.

There was little variation in the estuarine profiles of particulate selenite + selenate 

(Fig. 4 IB through Fig. 42B) and concentrations ranged from non-detectable to 0.15 nmol 

L '1. Observed estuarine averages were 0.08 ± 0.07 nmol L‘l in June and 0.04 ± 0.03 

nmol L'1 in October. Simulated selenite + selenate concentrations profiles appear to be 

within the errors of the observed data (Fig. 40B to Fig. 4 IB). The linear correlation 

coefficients were 0.185 in June 1998 (Fig. 41B) and 0.152 in October 1998 (Fig. 42B).
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Fig. 42. Particulate selenium in the Northern Reach on October 12, 1998. 
Observed data were obtained from Doblin et al. (in prep.).
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Table 17
Model validation of particulate selenium and its speciation for all sample periods

Correlation
coefficient

r0.QS M'
(nmol L *)

Cl
(%)

Observed 
Average 

(nmol L 1)

Model 
Average 

(nmol L 1)
A nn!23.1986
Total selenium 0.742 0.514 +0.01 93 0.14 ±0.06 0.19 ±0.08

Semember 23.
1986 0.778 0.482 +0.03 84 0.24 ± 0.09 0.32 ±0.13
Total selenium 

November 6. 1997
Total selenium 0.439 0.433 +0.02 85 0.15 ± 0.04 0.16 ±0.06
Selenite + 0.683 0.444 -0.01 82 0.05 ± 0.04 0.03 ±0.01

Selenate -0.261 0.433 -0.01 87 0.07 ±0.11 0.07 ±0.04
Elemental -0.115 0.497 -0.01 83 0.04± 0.04 0.06 ± 0.02
Organic selenide 

June 12. 1998
Total selenium 0.425 0.468 +0.03 76 0.13 ±0.07 0.19 ±0.01
Selenite + 0.185 0.482 -0.02 80 0.08 ± 0.07 0.07 ± 0 .0 1

Selenate -0.288 0.468 +0.01 80 0.04 ± 0.04 0.06 ±0.01
Elemental 0.211 0.707 -0.02 70 0.02 ±0.07 0.06 ± 0 .0 1
Organic selenide 

October 12. 1998
Total selenium 0.623 0.433 -0.03 78 0.13 ±0.03 0.14 ±0.06
Selenite + 0.152 0.456 +0.01 77 0.04 ±0.03 0.04± 0.01

Selenate 0.124 0.433 +0.00 98 0.02 ±0.02 0.06 ±0.01
Elemental 0.446 0.444 -0.01 77 0.06 ±0.04 0.05 ±0.01
Organic selenide

* a (-) sign indicates mode! was under predicting relative to the observed, while a sign indicates model

was over predicting
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The low correlation coefficient could be due to invariance of the data. Model-derived 

concentrations of particulate selenite+selenate were plotted against observed 

concentrations for October. As Fig. 43 shows the observed data clustered around

•j 0.25
os=
S  0.20

0.15

w
•g 0.10 
"p
I  0.05 
3

.1 0.00 co
0.050.00 0.10 0.15 0.20 0.25

Observed selenite + selenate (nmol L’1)

Fig. 43. Plot of model-derived particulate selenite + selenate and 
observed particulate selenite+selenate. The possibility of non-linearity 
could be due to little variation in the data.

0.04 nmol L'1 and there appears to be outliers in the data (e.g., 15 nmol L'1). Therefore, 

the low correlation coefficient is probably due to invariance of particulate 

selenite+selenate and outliers. Even though the correlation coefficients were low, the 

model was only slightly under predicting in June (-0.02 nmol L '1) and over predicting in 

October (+0.01 nmol L 1). These result in a confidence interval of 80% (June; Fig. 4IB) 

and 77% (November; Fig. 42B). The June model-simulated average was 0.07 ± 0.01
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nmol L*1, while the October simulated average was 0.04 ±0.01 nmol L'1. Therefore, the 

statistical parameters confirm the visual observation that the model was able to simulate 

particulate selenite + selenate. The model was also able to simulate the observed 

behavior for the other years (Table 17 and Appendix Q  and can be used to predict 

particulate selenite + selenate.

Observed particulate elemental selenium concentrations were low in the San 

Francisco Bay and ranged from non-detectable to 0.25 nmol L '1 (Fig. 41B through Fig 

42B), with higher concentrations located in the upper estuary. Model-derived 

concentrations of elemental selenium had an estuarine distribution similar to the observed 

data for June 1998 (Fig. 41C), and October 1998 (Fig. 42C). The linear correlation 

coefficient was low for both months (-0.288 in June and 0.124 in October). However, the 

confidence interval 80% in June and 98% for October 1998 (Fig. 41C and Fig. 42C) 

demonstrates that the model was able to predict elemental selenium for these months.

The mean cumulative error was +0.01 nmol L’1 for June and 0.00 nmol L'1 for October. 

The observed estuarine average was 0.04 ± 0.04 nmol L'1 (June) and 0.02 ± 0.02 nmol L’1 

(October) and the model-generated means agreed at 0.06 ± 0.01 nmol L'1 for June and 

0.06 ± 0.01 nmol L '1 for October. The model was able to predict elemental selenium for 

all of the simulated runs (Table 17) and was valid under different environmental 

conditions.

An observed mid-estuary maximum of particulate organic selenide was detected 

in samples taken in October 1998 (Fig. 42D). Organic selenide concentrations ranged 

from non-detectable to 0.2 nmol L‘l (Fig. 41D through Fig. 42D) with an average
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estuarine concentration of 0.06 ± 0.04 nmol L*1 for October and 0.02 ± 0.07 nmol L'1 for 

June (Table 17). The correlation coefficient in June was low (r = 0.211). Model- 

generated organic selenide concentrations were lower than observed concentrations 

(M =- 0.02 nmol L'1), which resulted in a confidence interval of 70%. The simulated 

mean (0.06 ± 0.01 nmol L'1) was similar to the observed mean. It may appear that the 

model was not able to simulate organic selenide well for June, but since only five of the 

eighteen samples in June 1998 had any detectable particulate organic selenide, the fit is 

reasonable. The correlation coefficient in October was 0.446 and significant at the ro.os 

level. Furthermore, the model-computed estuarine average was 0.05 ±0.01 nmol L‘‘ 

(Table 17) and is essentially identical to the observed estuarine average (0.06 ± 0.04 

nmol L'1). The mean cumulative error indicates that the model was under predicting 

particulate organic selenide (M = -0.01 nmol L'1 in October 1998), which results in a 

confidence interval of 77%. Thus, the model was able to predict particulate organic 

selenide for these two months and other simulations successfully (Table 17), showing that 

the calibrated model can be used to predict particulate organic selenide.

As discussed in Section 3.4.5, the concentration of selenium associated with 

particles is a better indicator of the availability of particulate selenium to higher trophic 

levels (Luoma and Presser, 2000). Using the model-derived TSM and the total particulate 

selenium concentrations, the amount of selenium associated with particles in the water 

column was calculated (see Section 3.4.5). The model-derived concentration of selenium 

associated with particles was 030 jig g'1 ± 0.15 pg g'1 (June) and 0.55 ± 0.18 pg g '1 

(October, Table 18). In comparison, observed particle-associated selenium were 0.49 ±
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0.32 jig g*‘ for June and 0.63 ± 0.24 |ig g '1 for October (Table 18).

Table 18
Total selenium associated with particles in the water column 

Year_____________ Part. £  Se (tig g~l)_____
ADril 1986

Model 0.35 ±0.18
Observed 0 .4 l± 0 .l7

Sept 1986
Model 0.79± 0.17
Observed 0.74 ± 0.24

Nov 1997
Model 0.90 ±0.10
Observed 0.85 ±0.29

June 1998
Model 0.30 ±0.15
Observed 0.49 ±0.32

Oct 1998
Model 0.55 ±0.18
Observed 0.63 ±0.24

For all sampling periods, the model-derived particulate selenium concentrations were 

similar to the observed values (Table 18). Higher values were observed in the fall than 

the spring, but none of the estuarine averages were greater than I pg g '1, which has been 

known to cause elevated selenium concentrations in clams (Luoma et al., 1992).

4.4. PREDICTIVE MODELING

4.4.1. Future Scenarios

Having validated the complete model under a variety of environment conditions, 

it now can be used for predictive purposes. Predictive simulations, or forecasting, can be
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useful in understanding how a system will respond to specific changes. As examples, 

models are currently being used to predict the growth of fish populations in streams (Bell 

et al., 2000), past and future conditions of aquatic systems (Menshutkin et al., 1998), and 

the effects of global warming (Monirul Qader Mirza, 2002; Gu et al., in press; Eide and 

Heen, 2002).

In the San Francisco Bay, it is the goal of the State of California to "reduce the 

impacts of water diversion on the Bay-Delta system”

(http://www.bavdeltawatershed.org/pdf/prog plan.pdf). This goal includes restoring 

some of the flow from the San Joaquin River, which for most of the year has little or no 

water entering the estuary (Arthur and Ball, 1979). Presser and Piper (1998) found that 

98% of the flow from the San Joaquin River was being diverted for irrigation practices. 

Increasing the flow from the San Joaquin River could alter the total dissolved and 

particulate selenium concentrations in the estuary and the model was therefore used to 

examine this scenario.

Sensitivity results from Section 3.3 as well as previous field studies (Cutter,

1989b; Cutter and San Diego McGlone, 1990), show that total dissolved selenium in the 

estuary are strongly influenced by selenium discharges from refineries. Using the 

validated model, the effects of increased and decreased refinery discharges have on the 

biogeochemical cycle of selenium in the Northern Reach of the San Francisco Bay were 

examined.

For all predictive simulations, only the total dissolved and particulate selenium 

data will be shown to shorten the discussion, but the complete set of future simulations
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are given in Appendix D.

4.4.2. Variable San Joaquin River Flow

For simulations on increasing the discharge from the San Joaquin River, the 

discharge rate from Vemalis (San Joaquin freshwater end member) was used as the San 

Joaquin discharge rate into the Delta (www.iep.ca.gov). The flow at Vemalis is greater 

than what is currently discharged into the San Francisco Bay from the San Joaquin River 

and is representative of what the flow might be if there was no water removal for 

irrigation practices. It should also be remembered that an empirical relationship was 

established to account for removal of selenium during its transport through the Delta, the 

interface between the San Joaquin River at Vemalis and the Bay. It is hypothesized that if 

the water flow is increased, the net removal may not be as large due to a shorter residence 

time. Therefore, a model simulation was also done to examine how removing the “Delta 

removal effect" (described in Section 1.4), would affect the biogeochemical cycle of 

selenium. For this no ’’Delta removal effect” simulation, the flow from Vemalis was also 

used. Both of these results were then compared to estuarine profiles during a normal flow 

year for the San Joaquin River (2000; www.iep.ca.gov: labeled "normal year" in all 

figures and tables). The discharge from the Sacramento River was not altered and was 

also from the flow year 2000 (www.iep.ca.gov). The simulations were ran for a high 

flow month (April) and a low flow month (November).

Predicted total dissolved selenium in the estuary during a high flow month was
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non-conservative (Fig. 44A) for the normal flow conditions. Using the discharge rate 

from Vemalis and removing the "Delta removal effect" of selenium did not change the 

non-conservative behavior (Fig. 44A). Under currently observed flow conditions in 

April, the model predicts an average estuarine concentration of 1.22 ± 0.42 nmol L'1, 

while using the higher flow from Vemalis resulted in an increase to 1.43 ± 0.44 nmol L'1 

(Table 19). Removing the “Delta removal effect” resulted in a predicted estuarine 

average concentration of 2.33 ±0.92 nmol L‘l (Table 19), which is 1.11 nmol L'1 higher 

than what would be observed under the current discharge rates from the San Joaquin 

River (Table 19).

Low flow predictions (November) show that total dissolved selenium was non- 

conservative in the estuary (Fig. 45A). Under normal flow conditions from the San 

Joaquin River, a mid-estuary peak of total dissolved selenium was predicted (Fig. 45A). 

Using the higher discharge from Vemalis, a broader total dissolved selenium peak is 

created and shifted toward the riverine end members. Combining the increased flow for 

the San Joaquin River with no “Delta removal effect” increased the lower salinity 

maxima to 5 nmol L 1, which is greater than any observed in the past (Cutter, 1989b; 

Cutter and San-Diego 1990; Cutter and Cutter, in prep.). The predicted estuarine average 

total dissolved selenium concentration was 1.58 ± 0.33 nmol L'1 during normal low 

discharge from the San Joaquin, 2.06 ± 0.59 nmol L'1 with the higher discharge from 

Vemalis, and 3.14 ± 1.23 nmol L‘‘ when the combined effects of discharge from Vemalis 

and no “Delta removal effect” were run (Table 19). The higher concentrations during low 

flow are consistent with a longer water residence time (Cutter, 1989b; Cutter and San
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Table 19
Predicted dissolved selenium and particulate selenium concentrations during a typical 
high flow month (April) and low flow month (November) for increased flow from the 
San Joaquin River and different refinery discharge rates________________________

Diss. Y  Se Part. Y  Se Part. Z Se
(nmol L 1) (nmol L’1) (dg g '1)

April
Vemalis How, no "Delta removal 2.33 ±0.92 0.21 ±0.09 0.44 ±0.28
effect"
Vemalis How, with "Delta removal 1.43 ±0.44 0.19 ±0.07 0.44 ±0.26
effect"
Normal San Joaquin flow 1.22 ±0.42 0.19 ±0.07 0.43 ±0.26

November
Vemalis How, no "Delta removal 3.14 ± 1.23 0.24 ±0.13 1.00 ±0.32
effect""
Vemalis How, with "Delta removal 2.06 ±0.59 0.16 ±0.10 0.64 ±0.16
effect"
Normal San Joaquin How 1.58 ±0.33 0.12 ±0.06 0.51 ±0.11

April
99mol d '1 total selenium 1.40 ±0.55 0.19 ±0.07 0.43 ±0.26
38 mol d '1 total selenium 1.22 ±0.42 0.19 ±0.07 0.43 ±0.26
No refinery inputs 1.05 ± 0.30 0.19 ±0.07 0.43 ±0.26

November
99 mol d '1 total selenium 1.98 ±0.52 0.14 ±0.06 0.62 ±0.14
38 mol d '1 total selenium 1.58 ±0.33 0.12 ±0.06 0.51 ±0.11
No refinery inputs 1.18 ±0.20 0.09 ±0.06 0.43 ±0.09
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Diego-McGIone, 1990).

Total particulate selenium profiles in April (high flow) show production of 

particulate material within the estuary (Fig. 44B). Nevertheless, the net effect of 

increasing the discharge rate from the San Joaquin River (Vemalis flow and no Delta 

reduction) had a negligible effect on the concentrations of total particulate selenium (Fig. 

44B); the estuarine averages of total particulate selenium were similar to each other 

(Table 19). However, increasing the flow in the San Joaquin River for a low flow month 

resulted in an increase in total particulate selenium in the estuary (Fig. 45B). Under 

normal flow conditions from the San Joaquin River, the average estuarine total particulate 

selenium concentration was 0.12 ± 0.06 nmol L'1 (Table 19), while it increased to 0.16 ± 

0.06 nmol L'1 under higher Vemalis flow, and to 0.24 ±0.13 nmol L'1 when the discharge 

was increased with no “Delta removal effect” factor applied.

The increase of total particulate could be due to either an increase in sediment 

resuspension or in situ production of particles (Section 1.4.9, Equations 1.34 to 1.41). 

Determining the particle associated selenium can be used as an indication of whether in 

situ production might be responsible for the predicted increase. In particular, if the 

increase is only due to an increase in sediment resuspension, the particle-associated 

selenium (pg g '1) should be similar for each simulation. A change in particulate selenium 

(nmol L'1) was observed during a low flow month (Fig. 45B) and the resulting particle- 

associated selenium indicates that with increased flow and no "Delta removal effect" the 

particulate associated selenium could be greater than Ipg g '1 (Fig. 46). This concentration 

is enough to cause elevated concentration of selenium in tissues of benthic consumers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pa
rt.

 Z
Se

 
(|ig

 
g'

181

2.0

1.5

1.0

0.5

0.0
0 5 10 15 20 25 30 35

Salinity

 Vemalis, with Delta Removal Effect
• - • • Vemalis, no Delta Removal Effect 
  Normal Year

Fig. 46. Particle-associated selenium for the San Francisco Bay when the 
discharge from the San Joaquin River is increased for a low flow month 
(November).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



182

like M. balthica (Luoma et al., 1992) and therefore may have effects on the rest of the 

estuarine food web. The estuarine averaged selenium associated with particles did not 

vary in April when the flow from the San Joaquin was altered (0.44 ± 0.26 pg g'1; Table 

19). However, in November the particle-associated selenium during normal river 

discharge was predicted to be 0.51 ± 0.11 pg g 1, and increasing to 0.64 ± 0.16 pg g’1 

when the discharge from Vemalis was used. Under the no "Delta removal effect" 

scenario, estuarine averaged particle-associated selenium concentrations increased to 1.00 

± 0.32 pg g’1 (Table 19).

4.4.3. Altered Refinery Inputs

Simulations were run to determine how changes in the refinery discharge flux 

would affect total dissolved and particulate selenium concentrations within the estuary.

In 1986, the refineries were discharging 99 mol d*1 of total selenium with 64% of the total 

as selenite (Cutter, 1989b). It can be hypothesized that if the refineries are discharging 

selenate instead of selenite, this would have a minimal effect on biotic processes (via 

uptake of particulate selenium) since the phytoplankton uptake rate for selenate is 4.5 

times lower than that for selenite. Therefore, three different fluxes were used to simulate 

how refinery inputs affects total dissolved and particulate selenium in the estuary. The 

discharge fluxes used were: 38 mol cT1 as a reference (current conditions), 99 mol d '\  and 

finally no flux. For these simulations, the speciation of selenium from the refineries was 

held at 13% of the total as selenite, 57% as selenate, and 30% as organic selenide. Thus, 

the selenate fluxes from the refineries for each simulation were either 0 mol d '1, 22 mol
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d '\  or 56 mol d '1. The discharge rate for the Sacramento and San Joaquin Rivers were 

from a normal year (2000, www.iep.ca.gov). The model was run for a high flow month 

(April) and a low flow month (November).

The predicted estuarine profile was non-conservative for all simulations (Fig.

47A). In April (high flow), without any refinery inputs the predicted estuarine average 

total dissolved selenium concentration was 1.05 ± 0.30 nmol L'1 (Table 19). The 

predicted estuarine average with a discharge rate of 99 mol d ‘ resulted in an estuarine 

average of 1.40 ±0.55 nmol L'1 (Table 19), which was 33% higher than what would be 

observed if there were no refinery inputs. The intermediate refinery flow gave an 

estuarine average of 1.22 ± 0.42 nmol L'1. Total particulate selenium (Fig. 47B) showed 

no change within the estuary due to an increase/decrease in refinery inputs, with an 

estuarine average total particulate concentration of 0.19 ± 0.07 nmol L '1.

For a low flow month without any refinery inputs, total dissolved selenium was 

non-conservative (Fig. 48A) and had an estuarine average of 1.18 ±0.20 nmol L'1. The 

discharge of selenium into the estuary from the refineries resulted in non-conservative 

estuarine profiles, with a mid-estuary maximum (Fig. 48A) and estuarine averages of 1.58 

± 0.33 nmol L*1 when the total discharge was 38 mol d '1, and 1.98 ± 0.52 nmol L '1 when 

the total discharge was 99 mol d '1 (Table 19). Under current refinery discharge rates (38 

mol d‘‘) the total dissolved selenium concentration is 34% higher than what would be 

observed with out any refinery inputs, and using a discharge rate of 99 mol d '1, it is 70% 

higher (Table 19). There is a slight change in total particulate selenium in the estuary as 

the refinery inputs increase (Fig. 48B).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.iep.ca.gov


185

A

Ec
<t>

V i
W
tI

0.50

i

o
Ec 0.25oonw
=a.

0.00
5 10 15 20 25 30 350

Salinity

• ' 99 mol cH
 No Refinery Inputs
  38 mold*1

Fig. 48. Predictive simulations of total dissolved (A) and particulate 
selenium (B) for different discharge rates from the refineries during 
a low flow month (November).

5

4

3

9

0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



186

In November (low flow), the total particulate selenium concentration was 0.09 ± 

0.07 nmol L '1 with no refinery inputs, and it increased to 0.14 ± 0.06 nmol L '1 when the 

refinery input was 99 mol d '1 of total selenium (Table 19). Any increase in total 

particulate selenium, must be due to in situ production since the flow from the refineries 

had no effect on the amount of sediment suspended or discharged into the Bay (Section 

1.4.6 and Section 1.4.9). The particle associated selenium increased from 0.43 ± 0.09 pg 

g'1 without any refinery inputs to 0.62 ± 0.14 pg g'1 when 99 mol d '1 of total dissolved 

selenium was discharged (Table 19). Undercurrent refinery discharge rates (38 mol d’1) 

the particle-associated selenium was 0.51 ± 0.11 pg g '1. Thus, there is little net difference 

between particle-associated selenium within the estuary when the discharge rate from the 

refineries was increased. However, the change in particle-associated selenium for a low 

flow months indicates that a maximum particle-associated selenium concentration (Fig. 

49) occurs where the refineries are located. Therefore, although increasing the discharge 

from the refineries (predominately selenate) increases total dissolved selenium, it has very 

little effect on particle-associated selenium on a normal flow year. However, if the 

simulation is run using observed river flow under dry conditions (river discharge from 

1977) with the higher refinery inputs (99 mol d '1) which 57% of the total is selenate, the 

particle-associated selenium increases to a maximum of 2.1 pg g '1 (Fig. 50). This is 

greater than what would occur if the flow from the San Joaquin River was increased, 

suggesting that the affects from the refineries can be magnified depending on the 

residence time of the water. Therefore, the refineries should not increase there discharge 

rate in the form of selenate since it can results in an estuarine average particulate
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selenium concentration of 12.1 ± 0.64 jig g '1 during a dry year.

4.5. CONCLUSIONS

The confidence associated with the model’s ability to predict future scenarios is 

dependent on the number of validation runs that can be done. If the model was validated 

under extreme conditions (as observed for dissolved selenium), the confidence in the 

model ability to predict future scenarios is greater. For total particulate selenium, the 

model was also able to simulate observed concentrations. However, the speciation data 

for selenium were only from 1 high flow and 2 low flow months. The validation results 

proved that the model was able to successfully simulate the observed behavior for these 

time periods, but more confidence in predicted speciation data would occur if there were 

more data available for validation tests. Once more data become available, the model can 

be further validated to ensure that it can simulate the extreme conditions that were 

observed in the dissolved selenium data (e.g., drought conditions).

When validation of a model is successful as it was above, the model can be used 

to predict how a slight change in the estuary can effect the biogeochemical cycle of 

selenium. As the above future scenarios demonstrated, a minor change in the inputs to 

the estuary can have a dramatic affect (increased San Joaquin River flow) or no effect at 

all (increased refinery inputs). In combination with food web models, the results 

generated with this model can be used to investigate higher food-web interactions and 

how policy-making decisions, like restoring the San Joaquin River flow, can affect 

organisms in the Bay.
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CHAPTER V 

CONCLUSIONS

5.1. MODEL PERFORMANCE

Models are used to synthesize existing information about systems and their output 

can provide additional information about the direction of future work (Costanza and 

Voinov, 2001). The discrepancies between model-derived concentrations and the 

observed data can be used to determine if there are missing sources/sinks or processes in 

the biogeochemical cycle of selenium (Fig. 10). Differences between model-generated 

particulate and dissolved selenium at the riverine end member (Chapter IV and Appendix 

C and D) suggest that the current model input of riverine selenium may not be accurate. 

In the model, the Sacramento and San Joaquin Rivers were treated as separate inputs that 

had no exchange until the San Joaquin entered the Bay at Antioch. However, Monson 

(2001) suggested that the exchange of water between the Sacramento River and the San 

Joaquin River, via Threemile Slough (Fig. 5 1), might be significant. In total, there are 

four connectors (Fig. 51) between the Sacramento River and the San Joaquin River that 

could account for water exchange between the two rivers. If this exchange is significant, 

it could explain why the model sometimes underestimates the riverine end member of 

constituents in the model (e.g., TSM, phytoplankton, dissolved and particulate selenium). 

Current studies by the USGS are examining the exchange of water between the two 

rivers. If the exchange is significant, it may be necessary to re-define the riverine
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Fig 51. The Sacramento-San Joaquin River with possible exchange pathways between the 
two rivers. They are (1) Sherman Lake, (2) Threemile Slough, (3) Georginna Slough, and 
(4) the Delta Cross Channel.
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inputs of selenium so that the Sacramento River and San Joaquin River are not treated as 

separate freshwater inputs.

With respect to the San Joaquin River, an empirical relationship was established to 

account for any removal/production of dissolved selenium between Vernal is and the Bay 

during its transport through the Delta. There are very little data available on this "Delta 

Removal Effect” of selenium, but the existing results suggest that this reduction could be 

significant (up to 80%; Cutter, unpublished data). It was assumed that the "Delta 

Removal Effect" was due to biogeochemical processes, but it could also be due to 

physical processes (e.g., different water masses mixing). As discussed above, there are 

studies being done to determine how much water exchange is occurring between the 

Sacramento and San Joaquin River. If this relationship is due to different water masses 

mixing, adjustments to account for river mixing may allow the Delta Reduction Effect to 

be eliminated from the model.

Model calibration also indicated that the understanding of in situ production of 

particulate selenite+selenate is not fully quantified. In the model, the concentration of 

particulate selenite+selenate in the estuary was a function of riverine inputs, sediment 

resuspension, and adsorption. Research on adsorption of selenite and selenate in 

estuarine environments is limited. Most of the current studies (Section 1.4.9) have been 

in low ionic strength soils, which makes their results difficult to apply for an estuary. 

Further studies need to be done to investigate the affects of adsorption of selenite in 

estuarine waters.

The sensitivity analyses indicated that particulate selenium is the most difficult
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species to simulate (it was sensitive to 17 of the 24 parameters tested). Phytoplankton 

production and uptake during low flow periods resulted in the greatest change in model 

output (Section 3.3.2). The model needs to be adjusted to simulate phytoplankton growth 

rates for different phytoplankton species and the uptake rates using Michaelis-Menton for 

species in the San Francisco Bay. In situ experiments within the Delta suggest that the 

uptake of selenium by phytoplankton may be on a diurnal time scale and with a high 

organic selenide uptake rate (Cutter, unpublished data). It is recommended that further 

research is done to investigate the uptake of selenium through in situ experiments (as with 

the Delta data) for phytoplankton species in the San Francisco Bay. With a better 

understanding on phytoplankton growth rates and uptake rates of selenium, the models 

ability to predict particulate organic selenide may be improved.

Even with these limitations and the need for added research, the model could 

predict with a confidence of 75% or greater the observed data in the estuary. Managers 

could use this model to help in determining the effects of added riverine inputs, refinery 

inputs, or an increase in phytoplankton productivity for the entire Northern Reach. 

However, the model is not designed for a specific area (e.g., Grizzley Bay) and the 

resolution of the model (3 km) is greater than the length of some of the Bays within the 

Northern Reach (Grizzly Bay is 6 km long). Models would need to be developed for each 

Bay to obtain finer resolution if management efforts were on a specific area of the Bay 

instead of the entire Northern Reach.

There are limitations of the model. For example, over time scales of decades, the 

bathymetry of an estuary changes. The model currently does not account for changes in
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the area or depth of the estuary. These changes would affect the dispersion of a 

constituent in the estuary (Equation 1.10). Therefore, the model can not be used if 

bathymetry changes are significant. But the model could be linked to model that predict 

changes in the bathymetry of the estuary to determine the effects on the biogeochemical 

cycle of selenium in the Northern Reach.

The June 1998 simulation indicates that during intense El Nino years, even though 

the model was able to simulate 75% of the observed behavior of total dissolved and 

particulate, the errors between the observed and predicted concentrations were greater 

than other simulations. This may be due to water column stratification in the estuary. 

Recent research suggests that El Nino events are becoming more frequent and intense 

(Chen et al., 2002). Based on the possibility of more El Nino events, the model may need 

to be adjusted to simulate a partially-mixed estuary.

5.1.1. Model Applications to Other Estuaries

The conservative and non-conservative behavior of dissolved selenium has been 

observed in other estuaries (Takayanagi and Wong, 1984; Takayanagi and Cossa, 1985; 

van der Sloot et al., 1985). ECoS 3 was adapted to simulate the biogeochemical cycle of 

selenium in the Northern Reach of the San Francisco Bay. Often the development of 

models can result in it only being applicable to the system of interests. However, 

research indicates that the processes in Fig. 10 should occur in all aquatic systems. Since 

Fig. 10 is applicable to other estuaries, this model could be used to predict the 

biogeochemical cycle of selenium in other well-mixed estuaries. Obviously some of the
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inputs (e.g., refinery inputs) may need to be removed from the model and the productivity 

of phytoplankton may need to be adjusted. For example, in the San Francisco Bay 

phytoplankton growth is light limited, while in other estuaries growth could be limited by 

nutrients and the benthic grazing terms might not be as high as in the San Francisco Bay. 

These minor modifications may need to be done to the model to account for differences 

between estuaries. In addition, model parameters such as sediment resuspension would 

need to be calibrated for other estuaries before this model could predict dissolved and 

particulate selenium for other well-mixed estuaries.

5.2. SUMMARY OF MODEL RESULTS

Recent advances in modeling the physical, chemical, and biological interactions in 

an estuary, allowed the development of a model that simulates the biogeochemical cycle 

of selenium in the San Francisco Bay. Findings from this model show that:

(1) Dissolved selenium concentrations and speciation are controlled by the inputs 

from the Sacramento-San Joaquin Delta and oil refineries for both high flow 

and low flow conditions;

(2) Particulate selenium concentrations are controlled by sediment resuspension, 

riverine inputs, and in situ production.

(3) Sensitivity analyses found that particulate organic selenide was the most 

difficult species to simulate due to the large number of variables on which it is 

dependent. Some of the parameters needed in simulating particulate organic 

selenide (e.g., rates of dissolved selenium uptake by phytoplankton) are still
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under investigation. Once these parameters are better quantified, model 

simulations of organic selenide should improve;

(4) The Northern Reach of the San Francisco Bay is river- and refinery-dominated 

for total dissolved selenium, while for particulate selenium, it is river- 

dominated in the high flow periods and phytoplankton-dominated in low flow 

times;

(5) Future simulations suggest that an increase in the San Joaquin River flow to 

the estuary could result in particle-associated selenium concentrations that are 

higher than what is currently observed. The particle-associated selenium 

could potentially be as high as 1 pg g '1, which could cause elevated 

concentrations in filter feeding clams;

(6) Increasing the input of selenium from oil refineries, in the form of selenate, 

would have little net affect on the currently observed particle-associated 

selenium. However, during dry conditions an increase in refinery inputs 

would result in particle-associated concentrations greater than 1 pg g '1.

5.3. CONCLUSIONS

In conclusion, models like that used here are useful for predicting the behavior of 

trace metals in an estuary. Modeling results from this study can be used in other models 

that examine the bioaccumulation of selenium in higher trophic levels in the estuary. For 

example, in the San Francisco Bay the bioaccumulation of selenium is dependent on the 

concentration and distribution of particulate selenium in the Bay that this model could
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provide. Furthermore, the model can be used as a template to study the biogeochemical 

cycle of other elements, which could be useful in restoration projects, pollution control, 

and other trophic transfer scenarios.
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APPENDICES 

APPENDIX A 

Input Data Files for the Model

Table AI
Refinery input for various years
Refinery Date Total Se 

(nmol L'1)
Se IV (nmol 
L'1)

Se VI 
(nmol L '1)

Se -n 
(nmol L'1)

Ra

Chevron 1986 250 ± 120 168 ±97 52 ±59 27 ±38 49.6
Exxon 1986 943 ± 170 734 ± 52 185 ± 173 31 ±44 7.7
Pacific 1986 97 ± 18 ND 74 ±39 18 ±20 0.8
Shell 1986 1784 ± 161 1417 ±289 266 ±60 74 ± 105 14.2
Tosco 1986 303 ±38 27 ± 17 144 ± 106 131 ±50 9.5
Rodeo 1986 1700 ±393 1150 ±90 386 ±545 156 ±221 9.0
Chevron 1987 250 ± 120 168 ±97 52 ±59 27 ±38 49.6
Exxon 1987 943 ± 170 734 ± 52 185 ± 173 31 ±44 7.7
Pacific 1987 97 ± 18 ND 74 ±39 18 ±20 0.8
Shell 1987 1784 ± 161 1417 ±289 266 ±60 74 ± 105 14.2
Tosco 1987 303 ± 38 27 ± 17 144 ± 106 131 ±50 9.5
Rodeo 1987 1700 ± 393 1150 ±90 386 ± 545 156 ±221 9.0
Chevron 1988 421 ± 169 270 ± 130 85 ±68 78 ±79 49.6
Exxon 1988 1439 ± 888 787 ± 608 58 ±76 580± 749 7.7
Pacific 1988 130 ±22 68 ±58 7 ± 6 54 ±38 0.8
Shell 1988 972 ±557 613 ±482 127 ±151 196 ±278 14.2
Tosco 1988 245 ± 108 87 ±70 25 ±36 128 ± 142 9.5
Rodeo 1999 1172 ±303 731 ±318 251 ±281 161 ±215 8.2
Chevron 1999 102 ±3 102 ± 3 217 ± 9 15 ± 13 22.6
Exxon 1999 368 ± 6 23 ± 7 181 ± 5 164± 8 7.2
Pacific 1999 ND ND ND ND ND
Shell 1999 254 ± 6 109 ±20 156 ± 9 ND 20
Tosco 1999 107 ± I 6.3 ± 2 64 ±20 37 ±3 15.5
Rodeo 1999 340 ± 4 318 ± 2 8.5 ± 1 14 ± 4 8.2

“Average discharge rate of refinery effluent (x 10 I d ) .  Data obtained from the State of 
California Water Resources Control Board.
NA = non-detectable (<0.01 nmol L'1)
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Table A2
Refinery input for years where discharge was not available but total loads were
____________________ 1997 (nmol d~ ) 1998 (nmol d~)

Chevron
Selenite 3.5 1.5
Selenate 3.1 2.5
Organic selenide 2.7 1.7

Shell
Selenite 7.8 3.5
Selenate 6.8 6.0
Organic selenide 6.0 4.1

Exxon
Selenite 7.9 3.6
Selenate 6.8 6.1
Organic selenide 6.1 4.1

Tosco
Selenite 0.8 0.7
Selenate 0.7 1.0
Organic selenide 0.6 0.8

Rodeo
Selenite 10.0 3.6
Selenate 9.3 7.0
Organic selenide 8.1 4.8

Total Discharge 79.0____________51.0

Table A3
Selenium associated with BEPS for the model
Distance
(km)

BEPS Elemental 
Se (nmol g*1)

BEPS SE 
IV+VI (nmol 
g ‘)

BEPS Org. Se -II 
(nmol g '1)

0 1.560 0.664 0.996
14.9768 1.560 0.664 0.996
25.409 1.385 0.740 1.518
27.4511 1.400 0.594 0.891
41.6088 1.255 0.571 0.91775
53.0312 1.5 0.774 1.161
66.1934 1.25 0.664 1.011
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Table A4
Bathymetry of the San Francisco Bay
Distance
(km)

Depth
(m)

0 7.07
3 7.07
7 7.07
10 8.60
13 10.12
16 11.64
20 13.17
23 10.88
26 7.53
29 7.53
32 7.53
35 11.34
38 17.74
41 19.26
44 19.26
47 19.26
50 18.20
53 14.08
56 10.58
59 9.97
62 11.34
66 12.56
69 16.67
72 19.87
79 16.06
82 17.13
85 22.77
98 47.91
101 60.41
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Table A5
Initial salinity for the Northern Reach 
Distance S^oai 
(km)________________
0 0.08
3.18 2.10
19.097 1.41
21.62 1.93
26.701 2.80
30.846 5.96
35.713 5.49
41.606 8.01
46.854 9.23
50.003 10.10
53.271 11.48
58.093 13.72
62.466 14.79
68.347 18.53
72.688 20.90
76.664 22.71
83.495 25.00
87.549 26.78
93.236 27.89
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APPENDIX B

Sensitivity Analysis for Varying Parameters by Different Percentages

Table B1
Sensitivity analysis of changing parameters by 25 %, 50 %, and 75 % during high flow 
(December to May) and low flow months (June to November) with dash lines indicate 
that the model is insensitive to varying that parameter 1 Sc.k I <0.15______________

Parameter DYSe D Se IV D SeV I DOrg. Part. Part. Se Part Part. Org
Se - n YSe IV+VI SeO Se-II

High Flow
c
+25% - - - - 1.07 1.13 1.22 0.81
+50% - - - - 1.08 1.12 1.22 0.81
+75% - - - - 1.08 1.13 1.22 0.82
k*
+25% - - - - - - - -

+50% - - - - - - - -

+75% - - - - - - - -

River Row
+25% 1.00 0.17 2.68 0.15 0.45 034 0.33 0.49
+50% 1.01 0.17 2.68 0.15 0.47 0.54 0.32 0.49
+75% LOO 0.18 2.69 0.15 0.46 034 0.32 0.48
Refinery
+25% - - - - - - - -

+50% - - - - - - - -

+75% - - - - - - - -

Ix
+25% - - - - - - - 0.35
+50% - - - - - - - 0.36
+75% - - - - - - - 0.34

Low Row

+25% _ _ _ _ 0.84 1.41 1.32 0.18
+50% - - - - 0.84 1.42 1.31 0.18
+75% - - - - 0.85 1.43 1.32 0.18

+25% - - - - - - - 0.15
+50% - - - - - - - 0.15
+75% - - - - - - - 0.15
River Row
+25% 0.21 -034 0.39 - 0.96 1.45 1.39 0.22
+50% 0.22 -0.33 0.39 - 0.97 1.46 1.40 0.22
+75% 0.23 -0.35 0.39 - 0.95 1.45 1.39 0.22
Refinery
+25% 0.33 0.33 0.36 0.28 0.23 - - 0.36
+50% 033 0.32 0.36 0.27 034 - - 0.38
+75% 0.33 0.33 036 0.29 033 - - 037
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Table B 1 Continued
Parameter D £S e D Se IV D Se VI DOrg. Part. Part. Se Part Part. Org

S e -n YSe IV+VI SeO Se-II
h
+25 % . 0.95 - - 1.56
+50% 0.95 - - 1.56
+15% - 0.95 - - 136

Table B2
Sensitivity analysis of changing parameters by + 25% and -25 % during high flow months 
(December to May) and low flow months (June to November) with Dash lines indicate 
that the model is insensitive to varying that parameter | Sc.ic | < 0.15_____________

Parameter DYSe D Se IV DSe VI DOrg. 
Se -II

Part.
YSe

Part. Se 
IV+VI

Part
SeO

Pan. Org 
Se-n

Hieh Row

+25% _ . _ 1.07 1.13 1.22 0.81
-25% - - - - 1.06 -1.13 -1.22 -0.80

+25% - - - - - - - -
-25 % - - - - - - - -
River Row
+25 % 1.00 0.17 2.68 0.15 0.45 0.54 0.33 0.49
-25% -1.01 -0.17 -2.67 -0.14 0.46 -0.53 -0.33 -0.49

Refinery
+25% - - - - - - - -

-25% - - - - - - - -

h
+25% - - - - - - - 0.35
-25% - - - - - - - -0.36

Low Row

+25% . _ _ 0.84 1.41 1.32 0.18
-25% - - - - 0.84 -1.41 -1.32 -0.18

ki
+25% - - - - - - - 0.15
-25 - - - - - - - -0.15
River Row
+25% 0.21 -0.34 0.39 - 0.96 1.45 1.39 0.22
-25 % -0.22 +0.35 -0.39 - 0.95 -1.44 -1.40 -0.20

Refinery
+25% 0.33 0.33 0.36 0.28 0.23 - - 0.36
-25% -0.33 -0.33 -0.36 -0.27 0.23 - - -0.36

h
+25% - - - - 0.95 - - 1.56
-25% - - - - 0.95 - - -1.56
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APPENDIX C 

Model Validation

Table C l. Observed selenium in North San Francisco Bay for 1987 and 1988
Distance Salinity Diss. ZSe Diss. Se IV Diss. Se VI Diss. Org. Se -II
(km) (nmol L*1) (nmol L*1) (nmol L'1) (nmol L'1)
8 October 1987

85 21.36 1.58 ±0.06 0.94 ±0.06 NDa 0.54 ±0.08
78 28.18 2.49 ±0.13 0.91 ±0.02 0.45 ±0.06 1.13 ±0.14
75 26.69 2.26 ±0.11 1.54 ± 0.05 0.52 ±0.06 0.20 ± 0 .1 1
70 23.92 3.32 ±0.29 1.36 ±0.08 2.00 ± 0.22 ND
67 22.74 2.32 ±0.09 1.42 ±0.02 0.43 ±0.02 0.47 ±0.09
65 20.46 3.06 ±0.04 1.42 ±0.06 1.60 ± 0.20 ND
58 20.48 3.38 ±0.11 1.56 ±0.06 0.65 ±0.10 1.17 ± 0.14
55 17.98 2.98 ± 0 .1 1 1.33 ±0.09 1.72 ±0.20 ND
50 15.91 3.02 ±0.16 1.54 ±0.09 0.78 ± 0.18 0.70 ±0.23
48 17.15 3.64 ±0.13 0.89 ±0.02 2.76 ±0.10 ND
42 15.48 2.99 ±0.19 1.40 ±0.06 1.82 ±0.25 ND
40 14.06 3.21 ±0.22 1.58 ±0.10 1.26 ±0.16 0.37 ±0.26
36 12.01 3.04 ±0.18 0.67 ±0.03 2.44 ±0.15 ND
33 8.48 2.33 ± 0.08 0.49 ±0.03 1.07 ±0.03 0.77 ±0.08
28 6.83 1.80 ±0.12 0.40 ±0.01 1.31 ±0.01 ND

17 December 1987
85 26.57 1.63 ±0.07 0.84 ±0.06 0.44 ± 0.07 0.35 ± 0.08
78 26.23 2.43 ±0.12 0.39 ± 0.02 1.60 ±0.10 0.44 ±0.16
75 25.64 1.48 ±0.03 0.74 ± 0.04 0.49 ± 0.06 0.25 ±0.06
70 25.62 2.31 ±0.07 0.90 ± 0.04 0.56 ± 0.08 0.85 ±0.10
67 23.63 1.71 ±0.11 1.13 ±0.04 0.71 ±0.10 ND
65 23.95 2.54 ±0.06 1.26 ±0.02 0.50 ±0.06 0.78 ±0.08
58 23.83 2.61 ±0.12 1.52 ±0.01 0.81 ±0.11 0.28 ±0.16
55 23.56 2.02 ±0.03 1.12 ±0.02 0.88 ±0.10 ND
50 21.36 1.86 ±0.06 1.00 ±0.06 0.90 ±0.06 ND
48 21.53 3.00 ±0.15 0.96 ±0.05 1.36 ±0.12 0.68 ±0.19
42 19.65 2.54 ±0.15 1.26 ±0.04 1.02 ±0.18 ND
40 16.36 2.07 ±0.14 0.91 ±0.02 0.91 ±0.09 0.25 ±0.17
36 13.31 1.98 ±0.05 1.16 ±0.02 0.48 ±0.02 0.34 ±0.05
28 6.64 1.58 ±0.07 0.61 ±0.01 0.72 ±0.06 0.25 ±0.09

15 March 1988
85 30.33 0.96 ±0.06 0.29 ±0.01 0.55 ±0.05 ND
78 29.66 1.61 ±0.03 0.44 ±0.03 1.24 ±0.07 ND
75 28.22 1.54 ±0.06 0.63 ±0.03 0.57 ±0.07 0.34 ±0.08
70 26.77 1.98 ±0.03 0.71 ±0.02 0.78 ±0.06 0.49 ±0.06
67 24.73 1.88 ±0.13 0.67 ±0.02 0.88 ±0.04 0.33 ±0.13
65 24.92 2.12 ±0.05 0.81 ±0.06 0.87 ±0.10 0.44 ±0.09
58 23.76 2.01 ±0.14 1.04 ±0.04 0.96 ±0.13 ND
55 21.71 2.54 ±0.05 1.29 ±0.06 1.19 ±0.06 ND
50 22.85 2.53 ±0.15 1.08 ±0.02 1.00 ±0.02 0.45 ±0.15
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Table Cl Continued
Distance Salinity Diss. XSe Diss. Se IV Diss. Se VI Diss. Org. Se -II
(km) (nmol L*1) (nmol L'1) (nmol L*1) (nmol L'1)

48 22.15 2.11 ±0.01 1.29 ±0.03 0.85 ±0.09 ND
42 20.84 3.18+0.17 1.08 ±0.02 1.98 ±0.02 ND
40 16.43 2.83 ± 0.08 1.25 ±0.08 0.97 ±0.09 0.61 ±0.09
36 14.70 2.79 + 0.09 1.18 ±0.06 1.57 ±0.12 ND
33 12.43 2.69 + 0.17 1.17 ±0.04 0.81 ±0.11 0.71 ±0.20
28 10.68 2.48+0.12 1.12 ±0.04 1.28 ±0.12 ND

*ND = non-detectable (<0.01 nmol L ')

Table C2
Model-generated salinity, dissolved selenium and its speciation for October 8 1987

Distance
(km)

Salinity Diss. ZSe 
(nmol L'1)

Diss. Se IV 
(nmol L'1)

Diss. Se VI 
(nmol L ')

Diss. Org. Se -II 
(nmol L ')

1.43 0.67 1.12 0.14 0.64 0.34
4.29 1.62 1.30 0.23 0.70 0.37
7.14 2.57 1.50 0.32 0.77 0.42
10.00 339 1.68 0.41 0.82 0.45
12.86 4.52 1.83 0.49 0.86 0.48
15.71 5.32 1.98 0.57 0.90 031
18.57 6.38 2.13 0.66 0.92 034
21.43 7.56 2.31 0.77 0.95 0.59
24.29 8.69 2.55 0.86 1.05 0.64
27.14 9.73 2.70 0.95 1.06 0.68
30.00 10.66 2.85 1.03 1.10 0.71
32.86 11.40 3.01 1.10 1.17 0.75
35.71 12.03 3.15 1.15 1.23 0.77
38.57 12.82 3.29 1.21 1.27 0.81
41.43 13.76 3.51 1.29 1.38 0.84
44.29 14.93 3.75 1.39 1.49 0.87
50.00 16.62 3.67 1.41 1.39 0.87
52.86 17.60 3.53 1.39 1.29 0.86
55.71 18.88 3.46 1.36 1.25 0.85
58.57 19.99 3.29 1.29 1.17 0.82
61.43 20.97 3.13 1.22 1.12 0.79
64.29 21.86 3.00 1.15 1.08 0.76
67.14 22.69 2.85 1.08 1.02 0.74
70.00 23.46 2.64 1.02 0.91 0.71
72.86 24.24 2.50 0.96 0.85 0.69
75.71 25.00 2.34 0.90 0.77 0.66
81.43 26.48 2.08 0.74 0.74 0.60
84.29 27.28 1.86 0.64 0.65 0.57
87.14 28.06 1.59 0.54 0.52 033
90.00 28.77 1.40 0.45 0.45 030
92.86 29.45 1.24 0.36 0.40 0.47
95.71 30.09 1.11 0.28 038 0.45
98.57 31.18 0.86 0.15 030 0.40
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Table C4
Model-generated salinity, dissolved selenium and its speciation for March 15 1988

Distance
(km)

Salinity Diss. —Se 
(nmol L'1)

Diss. Se IV 
(nmol L'1)

Diss. Se VI 
(nmol L’1)

Diss. Org. Se -H 
(nmol L'1)

1.43 0.87 0.83 0.16 032 0.35
4.29 1.80 1.07 0.25 0.45 0.38
7.14 2.65 1.27 0.33 034 0.40
10.00 3.50 1.54 0.41 0.70 0.43
12.86 4.31 1.69 0.48 0.75 0.46
15.71 5.07 1.91 0.55 0.88 0.48
1837 6.01 2.07 0.64 0.92 031
21.43 7.02 2.33 0.73 1.06 034
24.29 8.03 2.48 0.81 1.09 038
27.14 9.00 2.73 0.90 1.22 0.61
30.00 9.92 2.85 0.98 1.24 0.64
32.86 10.72 2.98 1.04 1.27 0.66
35.71 11.45 3.07 1.11 1.28 0.69
38.57 12.33 3.18 1.18 1.29 0.71
41.43 13.31 3.31 1.26 1.30 0.75
44.29 14.44 3.42 1.35 1.29 0.78
50.00 16.26 3.34 1.32 1.26 0.76
52.86 17.39 3.27 1.28 1.24 0.74
55.71 18.69 3.19 1.26 1.20 0.73
58.57 19.83 3.04 1.18 1.17 0.69
61.43 20.91 2.89 1.10 1.13 0.66
64.29 21.93 2.76 1.03 1.10 0.63
67.14 22.91 2.61 0.97 1.05 0.60
70.00 23.86 2.46 0.91 0.98 037
72.86 24.83 2.30 0.85 0.90 035
75.71 25.80 2.18 0.80 0.85 033
81.43 27.70 1.89 0.64 0.80 0.46
84.29 28.71 1.72 035 0.75 0.42
87.14 29.68 1.55 0.47 0.70 0.38
90.00 30.62 134 0.39 0.60 0.35
92.86 31.53 1.13 0.31 030 0.32
95.71 32.39 0.93 0.24 0.40 0.29
98.57 33.50 0.70 0.15 0.30 0.25
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