6 research outputs found

    Stability Evaluation and Stabilization of a Gastrin-Releasing Peptide Receptor (GRPR) Targeting Imaging Pharmaceutical

    No full text
    The prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) are identified as important targets on prostate cancer. Receptor-targeting radiolabeled imaging pharmaceuticals with high affinity and specificity are useful in studying and monitoring biological processes and responses. Two potential imaging pharmaceuticals, AMBA agonist (where AMBA = DO3A-CH2CO-G-[4-aminobenzyl]- Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2) and RM1 antagonist (where RM1 = DO3A-CH2CO-G-[4-aminobenzyl]-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2), have demonstrated high binding affinity (IC50) to GRP receptors and high tumor uptake. Antagonists, despite the poor tumor cell internalization properties, can show clearer images and pharmacokinetic profiles by virtue of their higher tumor uptake in animal models compared to agonists. For characterization, development, and translation of a potential imaging pharmaceutical into the clinic, it must be evaluated in a series of tests, including in vitro cell binding assays, in vitro buffer and serum stability studies, the biodistribution of the radiolabeled material, and finally imaging studies in preclinical animal models. Data related to acetate buffer, mouse, canine, and human sera stability of 177Lu-labeled RM1 are presented here and compared with the acetate buffer and sera stability data of AMBA agonist. The samples of 177Lu-labeled RM1 with a high radioconcentration degrade faster than low-radioconcentration samples upon storage at 2–8 °C. Addition of stabilizers, ascorbic acid and gentisic acid, improve the stability of 177Lu-labeled RM1 significantly with gentisic acid being more efficient than ascorbic acid as a stabilizer. The degradation kinetics of 177Lu-labeled AMBA and RM1 in sera follow the order (fastest to slowest): mouse > canine > human sera. Finally, 177Lu-labeled RM1 antagonist is slower to degrade in mouse, canine, and human sera than 177Lu-labeled AMBA agonist, further suggesting that an antagonist is a more promising candidate than agonist for the positron emission tomography (PET) imaging and therapy of prostate cancer patients

    Novel Peptide NIRF Optical Surgical Navigation Agents for HNSCC

    No full text
    Head and neck squamous cell carcinoma (HNSCC) survival rates have not improved in a decade, with a 63% 5-year recurrence rate after surgery, making HNSCC a compelling indication for optical surgical navigation (OSN). A promising peptide, HN1, targeted and internalized in human HNSCC cells in multiple laboratories, but was slow (24 h) to accumulate. We modified HN1 and explored structural variables to improve the uptake kinetics and create IRdye800 adducts useful for OSN. Eleven new molecules were synthesized and characterized chemically, in human HNSCC cells (Cal 27), and in HNSCC xenograft mice. Cal 27 flank xenografts in Balb/c nude mice were imaged for 3–48 h after 40 nmol intravenous doses of IR800-labeled molecules. Cell uptake kinetics in the 1–2 h window incubated at 1–10 μM were independent of the dye label (FITC, Cy5, or IR800), but increased markedly with additional N-terminal lipophilic substitution, and after resequencing the peptide to separate polar amino acids and move the lysine-dye more centrally. Microscopy confirmed the strong Cal 27 cell binding and demonstrated primarily cytosolic and membrane localization of the fastest peptide, 4Iphf-HN17. 4Iph-HN17-IR800 showed 26-fold greater rate of uptake in cells than HN1-IR800, and far stronger OSN imaging intensity and tumor to background contrast in mice, suggesting that the new peptide is a promising candidate for OSN of HNSCC

    Evaluation of peptide-based probes towards in vivo diagnostic imaging of bacterial biofilm-associated infections

    No full text
    The clinical management of bacterial biofilm infections represents an enormous challenge in today's healthcare setting. The NIH estimates that 65% of bacterial infections are biofilm-related, and therapeutic outcomes are positively correlated with early intervention. Currently, there is no reliable imaging technique to detect biofilm infections in vivo, and current clinical protocols for accurate and direct biofilm identification are nonexistent. In orthopedic implant-Associated biofilm infections, for example, current detection methods are based on nonspecific X-ray or radiolabeled white blood cell imaging, coupled with peri-prosthetic tissue or fluid samples taken invasively, and must be cultured. This approach is time-consuming and often fails to detect biofilm bacteria due to sampling errors and a lack of sensitivity. The ability to quantify bacterial biofilms by real-Time noninvasive imaging is an urgent unmet clinical need that would revolutionize the management and treatment of these devastating types of infections. In the present study, we assembled a collection of fluorescently labeled peptide candidates to specifically explore their biofilm targeting properties. We evaluated these fluorescently labeled peptides using various in vitro assays for their ability to specifically and nondestructively target biofilms produced by model bacterial pathogen Pseudomonas aeruginosa. The lead candidate that emerged, 4Iphf-HN17, demonstrated rapid biofilm labeling kinetics, a lack of bactericidal activity, and biofilm targeting specificity in human cell infection models. In vivo fluorescently labeled 4Iphf-HN17 showed enhanced accumulation in biofilm-infected wounds, thus warranting further study.</p

    Site Specific Discrete PEGylation of <sup>124</sup>I‑Labeled mCC49 Fab′ Fragments Improves Tumor MicroPET/CT Imaging in Mice

    No full text
    The tumor-associated glycoprotein-72 (TAG-72) antigen is highly overexpressed in various human adenocarcinomas and anti-TAG-72 monoclonal antibodies, and fragments are therefore useful as pharmaceutical targeting vectors. In this study, we investigated the effects of site-specific PEGylation with MW 2–4 kDa discrete, branched PEGylation reagents on mCC49 Fab′ (MW 50 kDa) via in vitro TAG72 binding, and in vivo blood clearance kinetics, biodistribution, and mouse tumor microPET/CT imaging. mCC49Fab′ (Fab′-NEM) was conjugated at a hinge region cysteine with maleimide-dPEG <sub>12</sub>-(dPEG<sub>24</sub>COOH)<sub>3</sub> acid (Mal-dPEG-A), maleimide-dPEG<sub>12</sub>-(dPEG<sub>12</sub>COOH)<sub>3</sub> acid (Mal-dPEG-B), or maleimide-dPEG<sub>12</sub>-(m-dPEG<sub>24</sub>)<sub>3</sub> (Mal-dPEG-C), and then radiolabeled with iodine-124 (<sup>124</sup>I) in vitro radioligand binding assays and in vivo studies used TAG-72 expressing LS174T human colon carcinoma cells and xenograft mouse tumors. Conjugation of mCC49Fab′ with Mal-dPEG-A (Fab′-A) reduced the binding affinity of the non PEGylated Fab′ by 30%; however, in vivo, Fab′-A significantly lengthened the blood retention vs Fab′-NEM (47.5 vs 28.1%/ID at 1 h, 25.1 vs 8.4%/ID at 5 h, <i>p</i> < 0.01), showed excellent tumor to background, better microPET/CT images due to higher tumor accumulation, and increased tumor concentration in excised tissues at 72 h by 130% (5.09 ± 0.83 vs 3.83 ± 1.50%ID/g, <i>p</i> < 0.05). Despite the strong similarity of the three PEGylation reagents, PEGylation with Mal-dPEG-B or -C reduced the in vitro binding affinity of Fab′-NEM by 70%, blood retention, microPET/CT imaging tumor signal intensity, and residual 72 h tumor concentration by 49% (3.83 ± 1.50 vs 1.97 ± 0.29%ID/g, <i>p</i> < 0.05) and 63% (3.83 ± 1.50 vs 1.42 ± 0.35%ID/g, <i>p</i> < 0.05), respectively. We conclude that remarkably subtle changes in the structure of the PEGylation reagent can create significantly altered biologic behavior. Further study is warranted of conjugates of the triple branched, negatively charged Mal-dPEG-A
    corecore