54 research outputs found

    Modeling and optimization of environment in agricultural greenhouses for improving cleaner and sustainable crop production

    Get PDF
    Resource-use efficiency and crop yield are significant factors in the management of agricultural greenhouse. Appropriate modeling methods effectively improve the control performance and efficiency of the greenhouse system and are conducive to the design of water and energy-saving strategies. Meanwhile, the extreme environment could be forecasted in advance, which reduces pests and diseases as well as provides high-quality food. Accordingly, the interest of the scientific community in greenhouse modeling and optimizing has grown considerably. The objective of this work is to provide guidance and insight into the topic by reviewing 73 representative articles and to further support cleaner and sustainable crop production. Compared to the existing literature review, this work details the approaches to improve the greenhouse model in the aspects of parameter identification, structure and process optimization, and multi-model integration to better model complex greenhouse system. Furthermore, a statistical study has been carried out to summarize popular technology and future trends. It was found that dynamic and neural network techniques are most commonly used to establish the greenhouse model and the heuristic algorithm is popular to improve the accuracy and generalization ability of the model. Notably, deep learning, the combination of “knowledge” and “data”, and coupling between the greenhouse system elements have been considered as future valuable development

    Humidity-Induced Charge Leakage and Field Attenuation in Electric Field Microsensors

    Get PDF
    The steady-state zero output of static electric field measuring systems often fluctuates, which is caused mainly by the finite leakage resistance of the water film on the surface of the electric field microsensor package. The water adsorption has been calculated using the Boltzmann distribution equation at various relative humidities for borosilicate glass and polytetrafluoroethylene surfaces. At various humidities, water film thickness has been calculated, and the induced charge leakage and field attenuation have been theoretically investigated. Experiments have been performed with microsensors to verify the theoretical predictions and the results are in good agreement

    Terlipressin May Decrease In-Hospital Mortality of Cirrhotic Patients with Acute Gastrointestinal Bleeding and Renal Dysfunction: A Retrospective Multicenter Observational Study

    Get PDF
    Acute gastrointestinal bleeding (GIB) rapidly reduces effective blood volume, thereby precipitating acute kidney injury (AKI). Terlipressin, which can induce splanchnic vasoconstriction and increase renal perfusion, has been recommended for acute GIB and hepatorenal syndrome in liver cirrhosis. Thus, we hypothesized that terlipressin might be beneficial for cirrhotic patients with acute GIB and renal impairment. In this Chinese multi-center study, 1644 cirrhotic patients with acute GIB were retrospectively enrolled. AKI was defined according to the International Club of Ascites (ICA) criteria. Renal dysfunction was defined as serum creatinine (sCr) > 133 μmol/L at admission and/or any time point during hospitalization. Incidence of renal impairment and in-hospital mortality were the primary end-points. The incidence of any stage ICA-AKI, ICA-AKI stages 1B, 2, and 3, and renal dysfunction in cirrhotic patients with acute GIB was 7.1%, 1.8%, and 5.0%, respectively. The in-hospital mortality was significantly increased by renal dysfunction (14.5% vs. 2.2%, P < 0.001) and ICA-AKI stages 1B, 2, and 3 (11.1% vs. 2.8%, P = 0.011), but not any stage ICA-AKI (5.7% vs. 2.7%, P = 0.083). The in-hospital mortality was significantly decreased by terlipressin in patients with renal dysfunction (3.6% vs. 20.0%, P = 0.044), but not in those with any stage ICA-AKI (4.5% vs. 6.0%, P = 0.799) or ICA-AKI stages 1B, 2, and 3 (0.0% vs. 14.3%, P = 0.326). Renal dysfunction increased the in-hospital mortality of cirrhotic patients with acute GIB. Terlipressin might decrease the in-hospital mortality of cirrhotic patients with acute GIB and renal dysfunction. NCT03846180 ( https://clinicaltrials.gov )

    Phage combination alleviates bacterial leaf blight of rice (Oryza sativa L.)

    Get PDF
    Rice bacterial leaf blight (BLB) is the most destructive bacterial diseases caused by Xanthomonas oryzae pv. oryzae (Xoo). Phages have been proposed as a green and efficient strategy to kill bacterial pathogens in crops, however, the mechanism of action of phages in the control of phyllosphere bacterial diseases remain unclear. Here, the glasshouse pot experiment results showed that phage combination could reduce the disease index by up to 64.3%. High-throughput sequencing technology was used to analyze the characteristics of phyllosphere microbiome changes and the results showed that phage combinations restored the impact of pathogen invasion on phyllosphere communities to a certain extent, and increased the diversity of bacterial communities. In addition, the phage combination reduced the relative abundance of epiphytic and endophytic Xoo by 58.9% and 33.9%, respectively. In particular, Sphingomonas and Stenotrophomonas were more abundant. According to structural equation modeling, phage combination directly and indirectly affected the disease index by affecting pathogen Xoo biomass and phage resistance. In summary, phage combination could better decrease the disease index. These findings provide new insights into phage biological control of phyllosphere bacterial diseases, theoretical data support, and new ideas for agricultural green prevention and control of phyllosphere diseases

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Morphology and microstructure of patterned nickel incorporated amorphous carbon films by simple pyrolysis

    No full text
    A simple but novel pyrolysis technique for the fabrication of nickel incorporated diamond-like carbon films with ring-like pattern was presented. Without using any template under ambient atmospheric pressure, nickel incorporated diamond-like carbon films exhibited some regular ring-like patterns on the films surface dependent on the nickel content to some extent, characterized by scanning electron microscopy. Compared with pure carbon films, nickel incorporation greatly enhanced carbon films graphitization. Besides the influence of the treatment temperature, the formation of the as-deposited films with ring-like patterns was also closely related to the synergy of the catalysis effect of nickel particles and the induction to reduce surface tension

    Facile fabrication of boron nitride nanosheets-amorphous carbon hybrid film for optoelectronic applications

    No full text
    A novel boron nitride nanosheets (BNNSs)-amorphous carbon (a-C) hybrid film has been deposited successfully on silicon substrates by simultaneous electrochemical deposition, and showed a good integrity of this B-C-N composite film by the interfacial bonding. This synthesis can potentially provide the facile control of the B-C-N composite film for the potential optoelectronic devices

    Correlation analysis between smoke exposure and serum neurofilament light chain in adults: a cross-sectional study

    No full text
    Abstract Background Smoke exposure is a prevalent and well-documented risk factor for various diseases across different organ systems. Serum neurofilament light chain (sNfL) has emerged as a promising biomarker for a multitude of nervous system disorders. However, there is a notable paucity of research exploring the associations between smoke exposure and sNfL levels. Methods We conducted a comprehensive analysis of the National Health and Nutrition Examination Survey (NHANES) cross-sectional data spanning the years 2013 to 2014. Serum cotinine levels were classified into the following three groups: < 0.05, 0.05–2.99, and ≥ 3 ng/ml. Multiple linear regression models were employed to assess the relationships between serum cotinine levels and sNfL levels. Additionally, we utilized restricted cubic spline analyses to elucidate the potential nonlinear relationship between serum cotinine and sNfL levels. Results A total of 2053 participants were included in our present research. Among these individuals, the mean age was 47.04 ± 15.32 years, and males accounted for 48.2% of the total study population. After adjusting the full model, serum cotinine was positively correlated with sNfl in the second group (β = 0.08, 95%CI 0.01–0.15) and in the highest concentration of serum cotinine (β = 0.10, 95%CI 0.01–0.19) compared to the group with the lowest serum cotinine concentrations. Current smokers, in comparison to non-smokers, exhibited a trend toward elevated sNfL levels (β = 0.07, 95%CI 0.01–0.13). Furthermore, subgroup analyses revealed interactions between serum cotinine levels and different age groups (P for interaction = 0.001) and gender stratification (P for interaction = 0.015) on sNfL levels. Conclusion The study suggested that serum cotinine was significantly and positively associated with sNfl levels in adult participants. Furthermore, current smokers tend to exhibit elevated sNfL levels. This research sheds light on the potential implications of smoke exposure on neurological function impairment and underscores the importance of further exploration in this area

    A study on the local corrosion behavior and mechanism of electroless Ni-P coatings under flow by using a wire beam electrode

    Get PDF
    The local corrosion behavior and mechanism of Ni-P coatings in a 3.5 wt% sodium chloride solution with different flow speeds (0 m s-1, 0.5 m s-1, 1 m s-1) were investigated through a wire beam electrode (WBE) with morphological, elemental and electrochemical analyses as well as numerical simulations. It was found that the microstructure of the Ni-P coating was in the shape of broccoli and possessed satisfactory compactness and uniformity. The numerical simulations showed that the speed increased and the static pressure decreased at the local area. Combined with WBE, it was found that the average corrosion potential decreased at that area. The results indicated that the corrosion tendency and corrosion rate of the Ni-P coating were larger at higher speeds, and the corrosion resistance could be improved by the electroless Ni-P coating. WBE was helpful in revealing the local electrochemical information of the Ni-P coating

    The Design of a Novel Flexible Tactile Sensor Based on Pressure-conductive Rubber

    No full text
    A novel flexible tactile sensor using conductive rubber with electrical-wires knitted method is presented. The sensor’s design is based on rubber’s pressure-sensitive property. It is flexible and can be mounted on any object to measure tactile information. The mathematic piezoresistivity model of the rubber is described, and we also discuss the sensor’s structure and scanning method. The simulation results show that the sensor can detect pressure accurately
    • …
    corecore