11,052 research outputs found

    Holographic study on the jet quenching parameter in anisotropic systems

    Get PDF
    We first calculate the jet quenching parameter of an anisotropic plasma with a U(1) chemical potential via the AdS/CFT duality. The effects of charge, anisotropy parameter and quark motion direction on the jet quenching parameter are investigated. We then discuss the situation of anisotropic black brane in the IR region. We study both the jet quenching parameters along the longitudinal direction and transverse plane

    Enhancing Hydrogen Generation Through Nanoconfinement of Sensitizers and Catalysts in a Homogeneous Supramolecular Organic Framework.

    Get PDF
    Enrichment of molecular photosensitizers and catalysts in a confined nanospace is conducive for photocatalytic reactions due to improved photoexcited electron transfer from photosensitizers to catalysts. Herein, the self-assembly of a highly stable 3D supramolecular organic framework from a rigid bipyridine-derived tetrahedral monomer and cucurbit[8]uril in water, and its efficient and simultaneous intake of both [Ru(bpy)3 ]2+ -based photosensitizers and various polyoxometalates, that can take place at very low loading, are reported. The enrichment substantially increases the apparent concentration of both photosensitizer and catalyst in the interior of the framework, which leads to a recyclable, homogeneous, visible light-driven photocatalytic system with 110-fold increase of the turnover number for the hydrogen evolution reaction

    Elevated CO2 and Warming Altered Grassland Microbial Communities in Soil Top-Layers.

    Get PDF
    As two central issues of global climate change, the continuous increase of both atmospheric CO2 concentrations and global temperature has profound effects on various terrestrial ecosystems. Microbial communities play pivotal roles in these ecosystems by responding to environmental changes through regulation of soil biogeochemical processes. However, little is known about the effect of elevated CO2 (eCO2) and global warming on soil microbial communities, especially in semiarid zones. We used a functional gene array (GeoChip 3.0) to measure the functional gene composition, structure, and metabolic potential of soil microbial communities under warming, eCO2, and eCO2 + warming conditions in a semiarid grassland. The results showed that the composition and structure of microbial communities was dramatically altered by multiple climate factors, including elevated CO2 and increased temperature. Key functional genes, those involved in carbon (C) degradation and fixation, methane metabolism, nitrogen (N) fixation, denitrification and N mineralization, were all stimulated under eCO2, while those genes involved in denitrification and ammonification were inhibited under warming alone. The interaction effects of eCO2 and warming on soil functional processes were similar to eCO2 alone, whereas some genes involved in recalcitrant C degradation showed no significant changes. In addition, canonical correspondence analysis and Mantel test results suggested that NO3-N and moisture significantly correlated with variations in microbial functional genes. Overall, this study revealed the possible feedback of soil microbial communities to multiple climate change factors by the suppression of N cycling under warming, and enhancement of C and N cycling processes under either eCO2 alone or in interaction with warming. These findings may enhance our understanding of semiarid grassland ecosystem responses to integrated factors of global climate change
    corecore