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Abstract We first calculate the jet quenching parameter of
an anisotropic plasma with a U (1) chemical potential via
AdS/CFT duality. The effects of charge, anisotropy parame-
ter, and quark motion direction on the jet quenching param-
eter are investigated. We then discuss the situation of an
anisotropic black brane in the IR region. We study both the
jet quenching parameters along the longitudinal direction and
the transverse plane.

1 Introduction

The gauge/string duality [1–3] provides a powerful tool to
analyze the dynamics of the strongly coupled quark–gluon
plasma (QGP). For example, the gauge/string duality has
been applied to various topics in heavy ion collisions, e.g.,
drag force [4–8], photon production [9–11], elliptic flow
[12], and jet quenching [13–18]. Among these we mainly
study anisotropy jet quenching [19–34]. The experiments
conducted at the Relativistic Heavy Ion Collider (RHIC)
[35,36] and at the Large Hadron Collider (LHC) [37,38]
demonstrate that the QGP is anisotropic and far from equi-
librium during a short period of time after the collision. After
that, the system becomes locally isotropic. In Refs. [24–
34], the authors constructed a new black brane solution of
IIB supergravity, aiming to describe the QGP at intermedi-
ate times τout < τ < τiso with an intrinsically anisotropic
hydrodynamical picture. This gravity solution is dual to a spa-
tially anisotropic N = 4 super Yang–Mills plasma at finite
temperature [39,40]. A R-charged version of the anisotropic
black brane was also obtained by one of us [19,20]. Those
static solutions, possessing a regular, anisotropic horizon,
can be viewed as a renormalization group flow from an AdS
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geometry in the ultraviolet to a Lifshitz-like geometry in the
infrared.

In this paper, we wish to extend previous calculations of
the jet quenching parameter to a more general Lifshitz-like
geometry [13]. A natural realization of the AdS/CFT cor-
respondence with Lifshitz-fixed points is described by the
following anisotropic spacetime [41–48]:

ds2 = r2

(
−dt2 +

p∑
i=1

dx2
i

)
+ r

2
z

d∑
i=p+1

dy2
j + dr2

r2 , (1)

which is invariant under the scaling transformation

(t, xi , y j , r) → (λt, λxi , λ
1
z y j , r/λ). Note that the y j -

direction corresponds to the Lorentz symmetry violation and
anisotropy. The simplest case with p = 0 represents non-
relativistic fixed points with dynamical critical exponent z,
which is very well known in quantum critical systems in con-
densed matter physics. Other cases with 1 ≤ p ≤ d − 1 are
interpreted as space-like Lifshitz fixed point and cannot be
simply regarded as a generalization of p = 0. The black
brane solution is given in Refs. [19,20,39], corresponding to
the case z = 3/2. One of the main purposes of this paper is
to calculate jet quenching parameters along the longitudinal
direction and transverse plane.

Another purpose of this paper is to take the effect of a non-
zero chemical potential into account on calculating the jet
quenching parameter. In general, in the quark–gluon plasma
produced in RHIC, the escaped quark is surrounded by high
density quarks fluids liberated from the nucleons of the heavy
ions and then some of the jets are quenched by the surround-
ing medium. In such a setting, the baryon density of the
quark–gluon plasma is relevant and the chemical potential
must be taken into account.

The structure of this paper is as follows. In Sect. 2 we
build up a general setting. In Sect. 3, we consider the jet
quenching in spatially anisotropic black brane background
with a chemical potential. The jet quenching parameter in
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a spatially anisotropic black brane with a chemical poten-
tial at the quark moving along the longitudinal direction is
discussed in Sect. 3.1. The cases of the transverse plane are
then discussed in Sect. 3.2. The jet quenching parameter in
an anisotropic black blane background as the quark is mov-
ing along the longitudinal direction is given in Sect. 4.1. The
situation for the quark moving in the transverse plane is dis-
cussed in Sect. 4.2. We end with conclusions in Sect. 5.

2 General setup

In order to compute the jet parameter q̂ for an ultra-relativistic
quark, we need to consider the worldsheet of a string whose
endpoints move at the speed of light along a given boundary
direction and are separated a small distance l along an orthog-
onal direction. As noted in [15], the jet quenching parameter
depends on how these directions are oriented with respect to
the longitudinal and transverse directions in the plasma. For
simplicity, we refer to z-axis as the longitudinal direction and
to the xy-plane as the transverse directions.

As illustrated in Fig. 1, we assume that the direction of
motion is contained in the xz-plane, which will be denoted
Z . We use θ for the angle between the Z - and the z-axis.
We choose one of the two independent orthogonal directions
to Z to be denoted by X , located within the xz-plane and
the other one, Y , coincides with the y-axis. We denote by
ϕ the polar angle in the XY -plane with respect to the Y -
axis. The relation between the XY Z -coordinate and the xyz-
coordinate is provided through the following transformation:

⎧⎪⎨
⎪⎩
z = Z cos θ − X sin θ,

x = Z sin θ + X cos θ,

y = Y.

(2)

If pϕ is called the momentum component in the direction
in the XY -plane specified by ϕ, then clearly

pϕ = pY cos ϕ + pX sin ϕ. (3)

We consider Eq. (3) as the differential treatment, then
we square and average both sides of the equation instead.
Because �pY�pX = 0, the result is

< �p2
ϕ >=< �p2

Y > cos2 ϕ+ < �p2
X > sin2 ϕ. (4)

The definition of the jet quenching parameter q̂ is the aver-
age momentum squared acquired by the quark through the
medium at a unit distance [50–52]. So we obtain

q̂θ,ϕ = cos2 ϕq̂θ,0 + sin2 ϕq̂θ, π
2
. (5)

Fig. 1 Schematic plot on relative orientation between the anisotropic
direction z, the direction of motion of the quark, and the direction in
which the momentum is measured �p

3 Spatially anisotropic black brane with a chemical
potential

In this section, we calculate the jet quenching parameter in the
spatially anisotropic black brane background with a chemical
potential [6,19,20]. We adopt the light-cone metric and use
coordinates of σα(τ, σ ) to parameterize the worldsheet. Note
that the action is invariant under a change. Then we calculate
the jet quenching by the Nambu–Goto action. Afterwards
we figure out the jet quenching parameter through the non-
perturbative definition of q̂ . Finally, we examine the effect of
the charge Q and the anisotropic parameter a by comparing
results on varying Q and a. In the beginning, we mainly
consider the anisotropic action as follows:

I = 1

2κ2

∫
d5x

√−g

(
R + 12 − 1

2
(∂φ)2

−1

2
e2αφ(∂χ)2 − 1

4
FμνF

μν

)
+ SGH , (6)

where we have set κ2 = 4π2/N 2
c and SGH is the Gibbons–

Hawking boundary term. We obtain the metric as

ds2
5 = L2

u2

(
−FBdt2 + dx2 + dy2 + Hdz2 + du2

F
)

+ L2e
1
2 φd�2

5, (7)

A = At (u)dt, χ = az, φ = φ(u), (8)

where L is the AdS radius and the event horizon is located
at u = uH . The functions F , B, and H can be found in [20].
The Hawking temperature is as follows:

T = −F ′(uH )
√BH

4π

= √
BH [ e− φH

2

16πuH
(16 + a2e7 φH

2 u2
H ) − e2φH Q2u5

H

24π
].

(9)
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According to the Bekenstein–Hawking entropy formula, the
entropy density goes as

s = AH

4GV3
= N 2

c e
− 5

4 φH

2πu3
H

, (10)

where V3 is the volume of the black brane horizon.

3.1 Motion along the longitudinal direction

Using light-cone coordinates

z± = t ± z√
2

, (11)

we can obtain the transformed metric as follows:

dS2
5 = L2

u2

[
1

2
(H − FB)(dz+)2 + 1

2
(H − FB)(dz−)2

− (H + FB)dz+dz− + dx2 + dy2 + du2

F
]

. (12)

We consider a quark moving along z−. The xy-plane is
rotational symmetric and we can set y = 0 without loss
of generality. Then we take the static gauge by identifying
(z−, x) = (τ, σ ). We specify the string embedding through
one function u = u(x) subject to the boundary conditions
u(±l/2) = 0. On this occasion the Nambu–Goto action takes
the form

S = − 1

2πα
′

∫
dτdσ

√−detgind . (13)

Since we have

det gind = det gαβ = L4

2u4 (H − FB)

(
1 + u′2

F
)

, (14)

and L− � L , where L− is the long side of the Wilson loop,
the action now reads

S = i L2L−

πα′

∫ l/2

0
dx

1

u2

√
1

2
(H − FB)

(
1 + u′2

F
)

. (15)

We use the Euler–Lagrange equation to deal with the inte-
gration. The x-independence of the Lagrangian results in a
conserved quantity �x and we just take the first-order term,
which is

u′2 = F
2�2

xu
4

[
(H − FB) − 2�2

xu
4
]
. (16)

Since u′ = ∂σu and
∫ l/2

0 dσ = l/2, one finds

l

2
= √

2�x

∫ uH

0
du

u2

√F√
(H − FB) − 2�2

xu
4
. (17)

Note that, as expected, l → 0 as �x → 0, so in this limit
we obtain

l = 2
√

2�xIx + O(�x
2), (18)

where

Ix ≡
∫ uH

0
du

u2

√F√H − FB . (19)

Substituting Eq. (16) into Eq. (15), one obtains

S = i L2L−
√

2πα′

∫ uH

0

du

u2

H − FB√F
√

(H − FB) − 2�x
2u4

. (20)

The action diverges because the integration near u = 0.
This can be seen by use of Maclaurin expansion in powers
of �x , and we obtain the recast action

S = i L2L−
√

2πα′

∫ uH

0
du

√H − BF
u2

√F + i L2L−l2

8
√

2πIxα′ + O(l4).

(21)

Substituting Eq. (18) into the above equation, and we have

S = i L2L−
√

2πα′

[∫ uH

0

du

u2

√H − FB√F + Ix�x
2 + O(�x

4)

]
.

(22)

The jet quenching parameter can be obtained from the
finite l2-term which does not require any renormalization.
It then follows that q̂ is not sensitive to the presence of the
anomaly. The relation between the action and the jet quench-
ing parameter is given by [14,49]

ei2S =< W A(C) >≈ e
− L−l2

4
√

2
q̂
, (23)

where S signifies the finite part of the action.
Comparing the l2 term in (21) with that in (23), we obtain

q̂z = q̂0,ϕ = L2

πIxα′ =
√

λ

πIx , (24)

where
√

λ = L2/α′ is the coupling parameter.
For Eq. (24), we can solve the value of q̂z by giving values

of Q and a. When Q equals zero, the case will recover the
situation of [15]. We have numerically determined q̂z as a
function of a/T for various values of Q. In Fig. 2, we show
the relation between the ratio of jet quenching parameter
q̂z to isotropic jet quenching parameter q̂ Q=0

iso and a/T for
Q = 0, 0.5, 1, 3, 5. We find that the jet quenching parameter
is generally enhanced as the chemical potential increases.
We can easily observe that the behavior of longitudinal jet
quenching for large chemical potential is different from the
small chemical potential case. For large chemical potential
the jet quenching parameter is growing much faster than the
small one at large a/T .
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(a)

(b)

Fig. 2 The function of the anisotropy of jet quenching parameter q̂z
for a quark moving along the longitudinal z-direction. a The ratio of q̂z
to q̂ Q=0

iso for Q = 0 (blue), Q = 0.5 (red) and Q = 1 (green). b Large
Q cases show results for Q = 3 and Q = 5 by a blue line and red line,
respectively

3.2 Motion in the transverse plane

Then we discussed the situation where the string motion is
in the transverse plane. Due to the rotational symmetry in
xy-plane, we can simply choose the string moving in the x-
direction. This situation corresponds to the case θ = π/2. In
the same way as in the previous example, it is convenient to
compute with suitable light-cone coordinates,

x± = t ± x√
2

. (25)

The metric (7) now takes the form

dS2
5 = L2

u2

[
1

2
(1 − FB)(dx+)2 + 1

2
(1 − FB)(dx−)2

− (1 + FB)dx+dx− + dy2 + Hdz2 + du2

F
]

. (26)

In this situation, we fix the static gauge by identifying
(x−, u) = (τ, σ ). At the same time, x+ = constant , and the

string projection in the xy-plane can be specified as follows:

y → cos ϕy(u), z → sin ϕz(u). (27)

One obtains the following result by using the Nambu–Goto
action (13):

S = i L2

πα′

∫
dx

∫ uH

0
du

× 1

u2

√
1

2
(1 − FB)

(
1

F + y′2 cos2 ϕ + Hz′2 sin2 ϕ

)
.

(28)

Similarly, since the Lagrangian does not depend on y, z
explicitly, we find that

y′ =
√

2Hu2�y

√
F

√
H(1 − FB) − 2u4

(
H�2

y cos2 ϕ + �2
z sin2 ϕ

) ,

(29)

z′ =
√

2u2�z

√
HF

√
H(1 − FB) − 2u4

(
H�2

y cos2 ϕ + �2
z sin2 ϕ

) ,

(30)

where �y and �z are conserved quantities. Because of

y′ = ∂σ y, z′ = ∂σ z, and
∫ l/2

0 dσ = l/2, following a similar
procedure to the previous section, we obtain

l

2
=

∫ uH

0
du

×
√

2Hu2�y

√F
√

H(1 − FB) − 2u4
(
H�2

y cos2 ϕ + �2
z sin2 ϕ

) , (31)

l

2
=

∫ uH

0
du

×
√

2u2�z

√HF
√

H(1−FB)−2u4
(
H�2

y cos2 ϕ+�2
z sin2 ϕ

) . (32)

Expanding the above two equations in the limit �y → 0 and
�z → 0, respectively,

l = 2
√

2�yIxy + O(�2), (33)

l = 2
√

2�zIxz + O(�2), (34)

with

Ixy ≡
∫ uH

0
du

u2

√F(1 − FB)
, (35)

Ixz ≡
∫ uH

0
du

u2

H√F(1 − FB)
, (36)
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which are convergent integrals. Substituting Eq. (29) and Eq.
(30) into Eq. (28), we can obtain

S = i L2L−
√

2πα′

∫ uh

0
du

×
√
H(1 − FB)

u2
√
F(H(1 − FB) − 2u4(H�2

y cos2 ϕ + �2
z sin2 ϕ))

1
2

.

(37)

Again, we can expand the action in powers of �y and �z ,
and obtain the result to the second order:

S = i L2L−
√

2πα′

∫ uH

0
du

√
1 − FB
u2

√F

+ i L2L−
√

2πα′

∫ uH

0
du

u2H cos2 ϕ�2
y + u2 sin2 ϕ�2

z

H√F√
1 − FB . (38)

Similarly, we only take out the second item. Because �y =
l/2

√
2Ixy and �z = l/2

√
2Ixz , the action becomes

S = i L2L−l2

8
√

2πα′

(
cos2 ϕ

Ixy + sin2 ϕ

Ixz

)
. (39)

Following the prescription Eq. (23), the transverse jet
quenching parameter is given by

q̂xy = q̂ π
2 ,0 = L2

πα′Ixy , q̂xz = q̂ π
2 , π

2
= L2

πα′Ixz . (40)

Hence

q̂ π
2 ,ϕ = q̂xy cos2 ϕ + q̂xz sin2 ϕ. (41)

In Fig. 3, we find that, for a small chemical potential, there
exists a peak in q̂xy at low anisotropy a/T , then q̂xy decreases
and becomes lower than the isotropic case at large anisotropy
a/T . But when the chemical potential is larger, q̂xy behaves
different from the small chemical potential case. It always
increases and grows fast as the anisotropy a/T increases.

In Fig. 4, we show the jet quenching parameter q̂xz for a
quark moving in the transverse xy plane. In contrast to q̂xy ,
q̂xz always increases whether the chemical potential is large
or not. In addition, we have plotted q̂ π

2 ,ϕ to q̂ Q=0
iso for various

values of ϕ in Fig. 5.
The drag force calculated in [16] shows that the jet quench-

ing increases with the increasing charge Q. Comparing with
the jet quenching computed in [6], we find that the jet quench-
ing is also increasing as the charge density Q increases.

(a)

(b)

Fig. 3 Functions of the anisotropic jet quenching parameter q̂xy for a
quark moving along the vertical direction of the XY -plane. The Y -axis
is the ratio of the jet quenching parameter q̂xy to q̂ Q=0

iso , the X -axis is the
ratio of parameter a to temperature T . a Lines show results for Q = 0
(blue), Q = 0.5 (red) and Q = 1 (green). b Blue line and red line
describe results for Q = 3 and Q = 5 respectively

4 Anisotropic black brane in the IR region

In this section, we will consider the jet quenching in
the Einstein–dilaton–axion model discussed in [53]. The
Einstein–dilaton–axion action is given by

S = 1

2κ2

∫
d5x

√−g

(
R + 12� − 1

2
(∂φ)2 − 1

2
e2αφ(∂χ)2

)
.

(42)

Here 2κ2 = 16πG is the gravitational coupling and G is the
Newton constant in 5 dimensions. The parameter α enters in
the dilaton dependence of axion kinetic term. Earlier work
in [39] considered the case with α = 1, and the case α =
−1 has SL(2, R) invariance. It is easy to see there exists
a near-extremal solution whose near horizon limit at small
temperature T 
 ρ is given by

ds2 = R2

u2

[
−Fdt2 + du2

F + dx2 + dy2 + Hdz2
]

, (43)

F = 1 −
(

u

uh

)p

, H = ρ2u
2

1+2α2 , R2 = 3 + 8α2

4 + 8α2 ,

(44)
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(a)

(b)

Fig. 4 Functions of the anisotropic jet quenching parameter q̂xz for a
quark moving along the parallel direction of the XY -plane. The vertical
coordinate is the ratio of the jet quenching parameter q̂xz to q̂ Q=0

iso , the
horizontal coordinate is the ratio of parameter a to temperature T . a
Lines show results for Q = 0 (blue), Q = 0.5 (red) and Q = 1
(green). b Blue line and red line describe results for Q = 3 and Q = 5,
respectively

p = 3 + 8α2

1 + 2α2 , χ = c1ρz, (45)

φ = − 2α

1 + 2α2 log(u), c1 =
√

2(3 + 8α2)

(1 + 2α2)
. (46)

The metric is a special case of the metric (1), which corre-
sponds to z = 1/2α2+1. The black hole horizon is at u = uh
and the boundary is at u = 0. The Hawking temperature is
given by

T = p2

16πuh
. (47)

This solution breaks rotational invariance along the z-
direction due to the linearly varying axion, and ρ is the mass
scale which characterizes the breaking of anisotropy.

(a) (b)

(c) (d)

Fig. 5 a The transverse jet quenching parameter q̂π/2,ϕ for Q = 0,
from top to bottom, with ϕ = π/2, π/3, π/4, π/6, 0. b The transverse
jet quenching parameter q̂π/2,ϕ for Q = 1, from top to bottom, corre-
sponds to ϕ = π/2, π/3, π/4, π/6, 0, respectively. c The transverse
jet quenching parameter q̂π/2,ϕ for Q = 2, from top to bottom, with
ϕ = π/2, π/3, π/4, π/6, 0. d The transverse jet quenching parameter
q̂π/2,ϕ for Q = 3, from top to bottom, with ϕ = π/2, π/3, π/4, π/6, 0

4.1 Motion along the longitudinal direction

To compute the jet quenching parameter along the longitu-
dinal direction, we use the light-cone coordinate so that

z± = t ± z√
2

, (48)

and we can recast the metric as

dS2 = R2

u2

[
1

2
(H − F)(dz+)2 + 1

2
(H − F)(dz−)2

−(H + F)dz+dz− + dx2 + dy2 + du2

F
]

. (49)

Now we consider a quark moving along the z−-direction.
The xy-plane is symmetric and we can set y = 0 without loss
of generality. Then we fix the static gauge by ascertaining
(z−, x) = (τ, σ ), and assign the string embedding through
one function u = u(x), which is subjected to the boundary
condition u(±l/2) = 0. Note that the Nambu–Goto action is
given by

S = − 1

2πα
′

∫
dτdσ

√−detgind . (50)

Because of

det gαβ = R4

2u4 (H − F)

(
1 + u′2

F
)

, L− � L , (51)
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the action takes the form

S = i R2L−

πα′

∫ l/2

0
dx

1

u2

√
1

2
(H − F)

(
1 + u′2

F
)

. (52)

Following the same procedure, noting that the Lagrangian
does not depend on x explicitly leads to a conserved quantity
Ex , and we take the first-order term, that is to say:

u′2 = F
2E2

x u
4 [(H − F) − 2E2

x u
4]. (53)

Since u′ = ∂σu and
∫ l/2

0 dσ = l/2, one finds

l

2
= √

2Ex
∫ uh

0
du

u2

√F√
(H − F) − 2E2

x u
4
. (54)

Note that l → 0 as Ex → 0, so in this limit we can obtain

l = 2
√

2ExKx + O(Ex 2), (55)

where

Kx ≡
∫ uh

0
du

u2

√F√H − F . (56)

We substitute Eq. (53) into Eq. (52), then we obtain the
equation as follows:

S = i R2L−
√

2πα′

∫ uh

0

du

u2

H − F√F
√

(H − F) − 2Ex 2u4
. (57)

We expand the integrand and use Eqs. (55) and (56) to get

S = i R2L−
√

2πα′

∫ uh

0
du

√H − F
u2

√F + i R2L−l2

8
√

2πKxα′ + O(l4).

(58)

As we have

ei2S =< W A(C) >≈ exp[− L−l2

4
√

2
q̂], (59)

this leads to

q̂z = q̂0,ϕ = L2

πKxα′ =
√

λ

πKx
, (60)

where
√

λ = R2/α′.
Figure 6 shows the jet quenching parameter q̂z as a func-

tion of α. It is found that as α increases, the ratio increases
and approaches a fixed value at large α.

4.2 Motion in the transverse plane

Next we discuss the situation where the motion is in the
transverse plane. We set the rotational symmetry in the xy-
plane and choose the motion in x-direction. That is θ =
π/2 in Fig. 1. In the y-direction and z-direction, there is no
rotational symmetry, so in this situation the result will be

Fig. 6 The vertical coordinate is the ratio of the jet quenching param-
eter of anisotropic black brane to the isotropic one. The horizontal co
ordinate is α, which can be used to describe the change of the geometry
near horizon

dependent of ϕ. In the same way as in the previous example,
we consider the light-cone coordinates,

x± = t ± x√
2

. (61)

The metric (7) becomes

dS2 = R2

u2

[
1

2
(1 − F)(dx+)2 + 1

2
(1 − F)(dx−)2

−(1 + F)dx+dx− + dy2 + Hdz2 + du2

F
]

. (62)

In this situation, we fix the static gauge by identifying
(x−, u) = (τ, σ ). At the same time, x+ = const., and we
specify the string projection in the xy-plane as follows:

y → cos ϕy(u), z → sin ϕz(u). (63)

One can get the following result by using (50)

S = i R2

πα′

∫
dx

∫ uh

0
du

× 1

u2

√
1

2
(1 − F)

(
1

F + y′2 cos2 ϕ + Hz′2sin2ϕ

)
.

(64)

The fact that the Lagrangian does not have explicit an y, z
dependence leads to

y′ =
√

2Hu2Ey√F
√
H(1 − F) − 2u4(HE2

y cos2 ϕ + E2
z sin2 ϕ)

,

(65)

and

z′ =
√

2u2Ez√HF
√
H(1 − F) − 2u4(HE2

y cos2 ϕ + E2
z sin2 ϕ)

,

(66)
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where Ey and Ez are conserved quantities. Because y′ =
dy/du and z′ = dz/du,

∫ l/2
0 dy = l/2 and

∫ l/2
0 dz = 1/2,

one has

l

2
= √

2Ey
∫ uh

0
du

×
√Hu2

√F
√
H(1 − F) − 2u4(HE2

y cos2 ϕ + E2
z sin2 ϕ)

,

(67)
l

2
= √

2Ez
∫ uh

0
du

× u2

√HF
√
H(1 − F) − 2u4(HE2

y cos2 ϕ + E2
z sin2 ϕ)

.

(68)

We expand the above two equations in the limit Ey → 0
and Ez → 0, respectively,

l = 2
√

2EyKx y + O(E2), (69)

l = 2
√

2EzKx z + O(E2), (70)

with

Kxy ≡
∫ uh

0
du

u2

√F(1 − F)
, (71)

Kxz ≡
∫ uh

0
du

u2

H√F(1 − F)
. (72)

Take Eqs. (65) and (66) into Eq. (64),

S = i R2L−
√

2Eα′

∫ uh

0
du

√H(1 − FH)

u

2

×
[

F
H(1 − F) − 2u4(Ey2 cos2 ϕ + E2

z sin2 ϕ)

] 1
2

.

(73)

We expand the integrand and rearrange the above equa-
tion, and we obtain

S = i R2L−
√

2πα′

∫ uh

0
du

√
1 − F
u2

√F

+ i R2L−
√

2πα′

∫ uh

0
du

u2H cos2 ϕE2
y + u2 sin2 ϕE2

z

H√F√
1 − F . (74)

We only take out the second item, then

S = i R2L−
√

2πα′ (cos2 E2
yKxy + sin2 E2

zKxz), (75)

and because Ey = l/2
√

2Kxy and Ez = l/2
√

2Kxz , this
yields

S = i R2L−l2

8
√

2πα′

(
cos2 ϕ

Kxy
+ sin2 ϕ

Kxz

)
(76)

Fig. 7 q̂z as a function of α with different ϕ. From top to bottom, the
curves represent ϕ = π/2, π/3, π/6, 0 relative to the y-axis

and

q̂⊥ = q̂ π
2 ,0 = R2

πα′Kxy
, q̂L = q̂ π

2 , π
2

= R2

πα′Kxz
. (77)

As a result,

q̂ π
2 ,ϕ = q̂⊥ cos2 ϕ + q̂L sin2 ϕ. (78)

From Fig. 7, we find the same situation as for the longitudinal
direction, values of the ratio rising with the increasing of α.
When it reaches one value, it stops rising, in spite of the
growth of α. We know the values of the ratio are reduced as
the angle ϕ decreases.

We find that our results are consistent with results in
[14,15]. We know the jet quenching parameter as the temper-
ature increases from [14,15]. In our case, the parameter α2 is
proportional to the temperature so that our result is consistent
with [14,15].

5 Summary

The jet quenching parameter q̂ describes the momentum
broadening of a highly relativistic parton moving through
a non-Abelian plasma. We have considered two cases, one is
a R-charged version of the anisotropic black brane [19,20]
and the other is an anisotropic black brane in the IR region
[39,40]. Both are in the coordinate system, where there exists
rotational symmetry in the x, y-directions but not in the z-
direction. In the context of heavy ion collisions the former
x, y symmetric directions and the latter z asymmetric direc-
tion would correspond to the transverse plane and beam direc-
tion, respectively. There are some factors that affect the jet
quenching parameter as follows: (1) the relative orientation
between these directions, (2) the movement direction of the
parton, (3) the direction of the measured momentum broaden-
ing, and (4) the charge density Q or, equivalently, the chem-
ical potential. We mainly discuss the quark moving in the
longitudinal direction and the transverse plane, namely we
study the cases θ = 0 and θ = π/2.
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In Sect. 3, we compute the jet quenching parameter in the
background of a charged anisotropic black brane. We find that
for small enough anisotropy the jet quenching parameter is
always larger than that in an isotropic plasma at the same tem-
perature, regardless of the directions of motion and momen-
tum broadening. As the anisotropy increase, the momentum
broadening for the moving quark will depend on the direction
of the momentum broadening. In other words, at small a/T
the momentum broadening is larger for quarks propagating
along the beam axis z, while it is larger for quarks propagating
in the transverse plane for large a/T (unless the momentum
broadening is measured very close to the orthogonal direc-
tion within the transverse plane). On the other hand, the jet
quenching parameter is always enhanced by the charge den-
sity Q, and the jet quenching parameter has different behav-
iors for small charge density and large charge density. When
the charge density is small, the jet quenching parameter in
the longitudinal direction will increase as a/T increases and
possibly approaches some constant at large a/T . But when
the charge density is large, the jet quenching parameter in
the longitudinal direction will increase fast at large a/T . As
the quark is moving in the transverse plane, the jet quenching
parameter has a similar behavior to the longitudinal case, i.e.,
it is always enhanced by the charge density and has different
behaviors for small and large charge density. However, for
the transverse case, the jet quenching parameter will depend
on the direction of momentum broadening.

In Sect. 4, we compute the jet quenching parameter in the
background in the IR region of a spatially anisotropic black
hole in Einstein–dilaton–axion theory. For this case, we also
conclude that the jet quenching parameter increases as the
anisotropy α and tends to saturate at large anisotropy α.

According to the above discussion, we can conclude that:
(1) The jet quenching parameter of the anisotropic systems
increases as the anisotropic parameter a or α goes up. (2)
The jet quenching parameter of the anisotropic systems also
increases as the charge Q goes up. (3) The jet quenching
parameter increases with the increasing angle φ. (4) When
the Q is small (Q ≤ 1), the jet quenching parameter increases
with increasing a or α until to some fixed value. It illustrates
that a and α only impact the parameter at small value.
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