7 research outputs found

    Arsenic Metabolism by Human Gut Microbiota upon in Vitro Digestion of Contaminated Soils

    Get PDF
    BACKGROUND: Speciation analysis is essential when evaluating risks from arsenic (As) exposure. In an oral exposure scenario, the importance of presystemic metabolism by gut microorganisms has been evidenced with in vivo animal models and in vitro experiments with animal microbiota. However, it is unclear whether human microbiota display similar As metabolism, especially when present in a contaminated matrix. OBJECTIVES: We evaluated the metabolic potency of in vitro cultured human colon microbiota toward inorganic As (iAs) and As-contaminated soils. METHODS: A colon microbial community was cultured in a dynamic model of the human gut. These colon microbiota were incubated with iAs and with As-contaminated urban soils. We determined As speciation analysis using high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. RESULTS: We found a high degree of methylation for colon digests both of iAs (10 mu g methylarsenical/g biomass/hr) and of As-contaminated soils (up to 28 mu g/g biomass/hr). Besides the formation of monomethylarsonic acid (MMA(V)), we detected the highly toxic monomethylarsonous acid (MMA(III)). Moreover, this is the first description of microbial thiolation leading to monomethylmonothioarsonic acid (MMMTA(V)). MMMTA(V), the toxicokinetic properties of which are not well known, was in many cases a major metabolite. CONCLUSIONS: Presystemic As metabolism is a significant process in the human body. Toxicokinetic studies aiming to completely elucidate the As metabolic pathway would therefore benefit from incorporating the metabolic potency of human gut microbiota. This will result in more accurate risk characterization associated with As exposures

    Dust Characterization and Source Apportionment at an Active Surface Mine in West Virginia

    No full text
    Human exposures to environmental agents occur primarily through inhalation, ingestion, and dermal absorption. The relevant exposure pathways for coal mining will depend on a number of factors including; physical and toxicological properties of suspected agent, mining practices, and mode of agent transport. There is increasing evidence that the major transport route to Appalachian coal mining communities is fugitive dust transported from surface mine sites. However, the extent of exposure and resulting risk is unknown. As a result, site specific data is necessary to evaluate potential exposures from dust generated as a result of coal mining activities. The objective of this study is to characterize potential health risk associated with exposure to the dust collected from an active surface mine in West Virginia. Dust monitoring and sampling was conducted at an active surface mine in West Virginia. Real-time dust monitoring device (DustTrak DRX Aerosol Monitor 8534) was used to measure PM1, PM2.5, PM10, and Total PM mass and size fractions. Dust monitoring was conducted for overburden and coal loading operations, and trucks at the haul roads. In addition, dust samples associated with drill cuttings, cóal haul roads, overburden haul roads, wheel loader for shale overburden, and rope shovel operations were collected from various areas in the mine. Dust samples collected from the mine underwent particle size analysis and collection of ingestible and respirable size fractions followed by elemental analysis. The chemical data combined with the monitoring data allowed for exposure due to dust exposure to be calculated using standard risk equations. Using the same default values for exposure frequency, exposure duration, and averaging time; exposure due to background soil and dust was calculated in order to estimate risk of disease incident in non-coal mining communities. The 95th percentile PM10 concentrations at 9-11m from the various mining practices were 0.12, 0.084, 0.62 and 0.43 mg/m3 for coal road trucking (truck-coal), wheel loader, overburden trucking (truck-overburden), and rope shovel operations respectively. Results indicate that even with an extreme scenario; 95th percentile air particulate concentrations 9-11 m from the mining operation, 365 days/year for 70 years, exposure to constituents via inhalation accounts for a relatively small portion of total exposure when everyday incidental ingestion of native soil is considered. Dust generated from an active WV coal mine did not account for a majority of exposure to constituents that could potentially result in health effects. Rather, default USEPA values for calculating ingestion exposure suggest that everyday residential exposure to native WV soil may account for more than 70% of the total exposure to the 18 inorganic constituents quantified in this study

    Die Haut

    No full text

    Tumours

    No full text
    corecore