218 research outputs found

    Intermartensitic Transformations in Ni2Mn1−xCoxGa Heusler Alloys

    Get PDF
    Ni2MnGa that possesses a Heusler L21 structure undergoes a martensitic transformation from the parent cubic (austenitic) phase to a low temperature complex tetragonal structure at TM = 202 K and has a Curie temperature of TC = 376 K. Some research groups have observed an intermartensitic transformation at a temperature TI\u3cTM, in Ni2MnGa single crystals. In this work detailed studies on the influence of substitution in the Mn subsystem by magnetic Co on the intermartensitic transformation properties of Ni2Mn1−xCoxGa compounds have been done by magnetization (5–400 K) and thermal expansion (80–300 K) measurements. The samples Ni2Mn0.92Co.08Ga, Ni2Mn0.91Co.09Ga, and Ni2Mn0.90Co.10Ga were studied. The intermartensitic transformation is observed in all of these alloys. As the Co concentration increases, the transformation becomes more pronounced and the temperature range for which the alloys stay in the intermartensitic state decreases as Co concentration increases. Similarities were observed between the magnetization and thermal expansion curves. The results are discussed in terms of the internal stress produced as a result of the Co substitution

    Magnetocaloric Properties of Fe and Ge Doped Ni2Mn1−xCuxGa

    Get PDF
    The magnetocaloric properties of Fe and Ge doped Ni2Mn0.75Cu0.25Ga Heusler alloys have been investigated. Using Ni2Mn0.75Cu0.25Ga as the parent material, the Fe doped system (Ni2Mn1−x(Cu–Fe)xGa) and a Ge doped system (Ni2Mn1−xCuxGa1−xGex) were studied. The manipulation of the Mn–Cu subsystem with Fe doping results in a decrease of the first order magnetostructural transition temperature, whereas the substitution of Ge for the Mn–Cu–Ga subsystems results in an increase of the magnetostructural transition temperature. In both cases the giant magnetocaloric effect is successfully preserved

    Inverse Magnetocaloric Effect in Ferromagnetic Ni50Mn37+xSb13−x Heusler Alloys

    Get PDF
    A study of the magnetocaloric effect (MCE) in the ferromagnetic Heusler alloys Ni50Mn37+xSb13−x (x = 0,0.5,1) has been carried out through magnetization measurements. An inverse magnetocaloric effect was observed in the vicinity of the first order martensitic transition. A maximum positive magnetic entropy change of ΔSm ≈ 19 J/kg K at approximately 297 K for a magnetic field change of 5 T was observed. It is demonstrated that the martensitic transformation temperature, and the corresponding ΔSm, can be tuned through a slight variation in composition

    Progress Report 2011: Understanding compound phase transitions in Heusler alloy giant magnetocaloric materials

    Get PDF
    Our goal is to gain insight into the fundamental physics that is responsible for magnetocaloric effects (MCE) and related properties at the atomic level. We are currently conducting a systematic study on the effects of atomic substitutions in Ni2MnGa-based alloys, and also exploring related full- and half-Heusler alloys, for example Ni-Mn-X (X=In, Sn, Sb), that exhibit a wide variety of interesting and potentially useful physical phenomena. It is already known that the magnetocaloric effect in the Heusler alloys is fundamentally connected to other interesting phenomena such as shape-memory properties. And the large magnetic entropy change in Ni2Mn0.75Cu0.25Ga has been attributed to the coupling of the first-order, martensitic transition with the second-order ferromagneticâÂÂparamagnetic (FM-PM) transition. Our research to this point has focused on understanding the fundamental physics at the origin of these complex, compound phase transitions, and the novel properties that emerge. We synthesize the materials using a variety of techniques, and explore their material properties through structural, magnetic, transport, and thermo-magnetic measurements

    Phase Transitions and Corresponding Magnetic Entropy Changes in Ni2Mn0.75Cu0.25−xCoxGa Heusler Alloys

    Get PDF
    Detailed studies of room temperature crystal structures, phase transitions, and related magnetic entropy changes (ΔSm) in shape memory alloys Ni2Mn0.75Cu0.25−xCoxGa (x = 0.0, 0.01, 0.02,0.025 0.03, 0.05) have been carried out by x-ray diffraction, magnetization, and thermal expansion measurements in magnetic fields of up to 5 T and in a temperature interval of 5–400 K. The high temperature austenitic cubic phase passes through a magnetic transition to ferromagnetic state and a structural transition to martensitic phase at the same temperature for all samples of the Ni2Mn0.75Cu0.25−xCoxGa system. The first order magnetostructural transition temperature increases from 308 to 345 K with increasing Co concentration. All of the alloys in the Ni2Mn0.75Cu0.25−xCoxGa system were found to possess large magnetic entropy changes. The maxima in the magnetic entropy changes ranged from ΔSmmax = −48 J/kg K to −64 J/kg K in a temperature range of 308–345 K

    Exchange Bias in Bulk Mn Rich Ni–Mn–Sn Heusler Alloys

    Get PDF
    An experimental study on the exchange bias properties of bulk polycrystalline Ni50Mn50−xSnx Heusler alloys has been performed. Martensitic transformations have been observed in the alloys for some critical Sn concentrations. The alloys, while in their respective martensitic phases, are found to exhibit exchange bias effect. Shifts in hysteresis loops of up to 225 Oe were observed in the 50 kOe field cooled samples. The observed exchange bias behavior in Ni50Mn50−xSnx is attributed to the coexistence of antiferromagnetic and ferromagnetic exchange interactions in the system

    The Structural and Magnetic Properties of Ni2Mn1−xMxGa (M = Co, Cu)

    Get PDF
    In Ni2MnGa (cubic structure of L21 type) a first order martensitic structural transition, from the parent cubic (austenitic) phase to a low temperature complex tetragonal structure, takes place at TM = 202 K, and ferromagnetic order in the austenitic phase sets at TC = 376 K. In this work, the Mn sites in Ni2MnGa have been partially substituted with magnetic Co and nonmagnetic Cu, and the influence of these substitutions on the structural and magnetic properties of Ni2Mn1−xMxGa (M = Co and Cu) have been studied by XRD and magnetization measurements. X-ray diffraction patterns indicate that the Co doped system possess a highly ordered Heusler alloy L21 type structure for 0.05\u3cx\u3c0.12, and the Cu doped compounds possess L21 structure for 0.05\u3cx\u3c0.10. The ferromagnetic ordering temperature increases with increasing Co concentration for this system, and rapidly decreases with increasing Cu concentration. Both systems show the increase in TM with increasing Co and Cu concentration. (T-x) phase diagrams have been plotted. The results are discussed in terms of 3d-electron concentration variation

    Exchange Bias Behavior in Ni–Mn–Sb Heusler Alloys

    Get PDF
    The authors report the observation of exchange bias in bulk polycrystalline Ni50Mn25+xSb25−x Heusler alloys. Shifts in hysteresis loops of up to 248 Oe were observed in the 5 T field cooled samples. The observed exchange bias behavior in Ni50Mn25+xSb25−x is attributed to the coexistence of antiferromagnetic and ferromagnetic exchange interactions in the system. Such behavior is an addition to the multifunctional properties of the Ni50Mn25+xSb25−x Heusler alloy system
    • …
    corecore