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Phase transitions and corresponding magnetic entropy changes
in Ni2Mn0.75Cu0.25−xCoxGa Heusler alloys

Mahmud Khan,a� Igor Dubenko, Shane Stadler, and Naushad Ali
Department of Physics, Southern Illinois University, Carbondale, Illinois 62901

�Received 21 February 2007; accepted 30 May 2007; published online 16 July 2007�

Detailed studies of room temperature crystal structures, phase transitions, and related magnetic
entropy changes ��Sm� in shape memory alloys Ni2Mn0.75Cu0.25−xCoxGa �x=0.0, 0.01, 0.02,
0.025 0.03, 0.05� have been carried out by x-ray diffraction, magnetization, and thermal expansion
measurements in magnetic fields of up to 5 T and in a temperature interval of 5–400 K. The high
temperature austenitic cubic phase passes through a magnetic transition to ferromagnetic state and
a structural transition to martensitic phase at the same temperature for all samples of the
Ni2Mn0.75Cu0.25−xCoxGa system. The first order magnetostructural transition temperature increases
from 308 to 345 K with increasing Co concentration. All of the alloys in the
Ni2Mn0.75Cu0.25−xCoxGa system were found to possess large magnetic entropy changes. The maxima
in the magnetic entropy changes ranged from �Sm

max=−48 J /kg K to −64 J /kg K in a temperature
range of 308–345 K. © 2007 American Institute of Physics. �DOI: 10.1063/1.2753587�

I. INTRODUCTION

Recent discoveries of ferromagnetic materials that un-
dergo first order magnetic transitions and exhibit large mag-
netocaloric effects �MCE� have triggered a significant
growth of interest in magnetocaloric cooling technology.1–3

Magnetocaloric cooling technology, when compared to
the currently employed gas cooling technology, has enhanced
efficiency, and therefore the recent discoveries and continu-
ing research on magnetocaloric materials may lead to the
development of environmentally friendly cooling
technologies.4–7 The MCE is a result of the alignment of
magnetic moments with an external magnetic field. The
alignment causes a reduction in the magnetic randomness,
i.e., the magnetic component of the total entropy. The reduc-
tion of magnetic entropy is compensated by an increase in
the other components of the total entropy. In the case of
magnetocaloric materials, the compensation results in the
heating of the material. A detailed discussion of the thermo-
dynamics of the MCE is presented in Ref. 8.

The Heusler alloy Ni2MnGa, an alloy that possesses
shape memory properties, is well known to have potential
applications as an actuator material. Lately it has gained ad-
ditional interest due to its possible application as a magnetic
refrigerant material.9–13 Stoichiometric Ni2MnGa has an L21

crystal structure at room temperature and, upon cooling, it
undergoes a first order martensitic structural phase transition
�at TM �220 K� from the parent cubic �austenitic� phase to a
low temperature �LT� complex tetragonal structure.14 The
Curie temperature of the austenitic phase of this is alloy is
TC=376 K.14 The substitution of Ni for Mn in the
Ni2+xMn1−xGa system results in an increase in TM and a de-
crease of TC and, for 0.17�x�0.20, the coincidence of TM

and TC results in an apparent first order magnetostructural
phase transition.15 As a result of this first order transition, a

large magnetic entropy change of ��Sm�=15 J kg−1 K−1 at a
1.8 T field is observed in Ni2.19Mn0.81Ga.10 In
Ni55.2Mn18.6Ga26.2 a magnetic entropy change of �Sm=
−20.4 J kg−1 K−1 at 317 K in a field of 5 T has been
reported.9 In polycrystalline Ni-Mn-Ga, the highest value of
�Sm=−66.2 J kg−1 K−1 at 350.25 K in a field change of 5 T
is observed in Ni2.19Mn0.81Ga.13 The coincidence of TM and
TC is also reported to be the result of Cu substitution on the
Mn sites of Ni2MnGa.16 In a recent study a magnetic entropy
change of �Sm�−64 J kg−1 K−1 at 308 K is observed in
Ni2Mn0.75Cu0.25Ga.17 Close to room temperature, this is the
highest �Sm value reported so far for any polycrystalline
Heusler alloy. Since the giant magnetic entropy change oc-
curs very close to room temperature, further research and
development on this alloy might result in a potential mag-
netic refrigerant material that could be very cheap and effi-
cient. To be able to tune the magnetostructural transition
temperature while preserving the large magnetic entropy
changes would be an interesting and significant outcome of
further research. This is because tunability of the large mag-
netic entropy changes over a wide temperature range will
open possibilities of developing magnetic refrigerant com-
posites for near room temperature magnetic cooling applica-
tions.

In Ref. 16, it is shown that the substitution of Cu on the
Mn sites of Ni2MnGa results in an increase of TM and a
decrease of TC, and the substitution of Co results in an in-
crease of both TM and TC. Therefore, in Ni2Mn0.75Cu0.25Ga,
where TM =TC, the partial substitution of Co on the Cu sites
could increase both TM and TC, resulting their shift to higher
temperature as one single magnetostructural transition.

As an attempt to test this idea conjecture hypothesis, in
this article we present a study on the magnetostructural phase
transition and the corresponding giant magnetic entropy
changes of Ni2Mn0.75Cu.25−xCoxGa �0�x�0.05�. The aim is
to control the magnetostructural phase transition temperature
while preserving the high �Sm value.

a�Author to whom correspondence should be addressed; electronic mail:
mkhan@siu.edu
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II. EXPERIMENTAL TECHNIQUE

The fabrication of approximately 5 g of polycrystalline
buttons of Ni2Mn0.75Cu0.25−xCoxGa �x=0.00, 0.01, 0.02,
0.025 0.03, 0.05� was done by conventional arc melting in
an argon atmosphere using Ni, Mn, Cu, Co, and Ga of 4N
purity. The elements were melted four times and the weight
loss after melting was found to be less than 0.3%. For ho-
mogenization, the samples were wrapped in Ta foil, annealed
in vacuum for 144 h at 800 °C, and subsequently slowly
cooled down to room temperature. The final compositions of
the alloys, as summarized in Table I, were determined by
energy dispersive x-ray photoluminescence �EDX� analysis.
The average estimated errors in determining the concentra-
tions were ±0.18%, ±0.10%, ±0.0.15%, 0.07%, and ±0.22%
for Ni, Mn, Cu, Co, and Ga, respectively.

For phase identification and lattice constants determina-
tion, x-ray diffraction measurements were conducted at room
temperature using a GBC minimaterials analyzer x-ray dif-
fractometer that employed Cu K� radiation and Bragg–
Brentano geometry.

The magnetization measurements were performed using
a superconducting quantum interference device made by
Quantum Design, Inc. The measurements were performed in
a temperature range of 5–400 K and magnetic field of up to
5 T. The saturation moments were estimated by extrapolation
of magnetization curves, M�H�, at 5 K to infinite magnetic
field. Effective paramagnetic moments �peff� and paramag-

netic Curie temperatures were obtained from the linear parts
of inverse susceptibility �−1 vs T curves at magnetic field of
1000 Oe. The magnetic entropy change, �Sm, was calculated
from the isothermal magnetization data using the relation

�Smag = �
0

H � �M

�T
	

H

dH . �1�

Thermal expansion measurements were performed using
a high resolution capacitance dilatometry method in the tem-
perature range of 150–350 K.18

III. RESULT AND DISCUSSION

The room temperature powder x-ray diffraction �XRD�
patterns of Ni2Mn0.75Cu0.25−xCoxGa �x=0.0, 0.01, 0.02,
0.025, 0.03, 0.05� are shown in Fig. 1�a�. The XRD pattern
of the sample with x=0 suggests that there is a coexistence
of the martensitic and austenitic phases in this sample at
room temperature. As Cu is partially replaced by Co, the
fraction of austenitic phases decreases until x�0.02, where
the samples are found to possess near-pure typical martensi-
tic body-centered-tetragonal �space group I4 /mmm� struc-
tures at room temperature. Figures 1�b� and 1�c� shows how
the lattice parameters, a and c, and the cell volumes change
with increasing Co concentration, respectively. It is observed
that Co slightly increases the lattice parameters and the cor-
responding cell volume of the samples. This is because the

TABLE I. Compositions of Ni2Mn0.75Cu.25−xCoxGa system obtained from the EDX measurements.

x % Ni % Mn % Cu % Co % Ga Composition determined from EDX
0 48.05 17.68 6.12 ¯ 28.16 Ni1.92Mn0.707Cu0.245Ga1.126

0.01 48.95 17.08 6.08 0.54 27.35 Ni1.958Mn0.683Cu0.243Co0.022Ga1.094

0.02 48.27 17.46 5.47 0.81 27.98 Ni1.931Mn0.698Cu0.219Co0.032Ga1.119

0.025 48.21 17.61 5.30 0.89 27.98 Ni1.928Mn0.704Cu0.212Co0.036Ga1.119

0.3 48.54 16.12 5.22 1.11 29.01 Ni1.942Mn0.645Cu0.209Co0.044Ga1.160

0.5 48.37 17.42 4.69 1.51 28.02 Ni1.935Mn0.697Cu0.188Co0.060Ga1.121

FIG. 1. �a� Powder XRD patterns of
Ni2Mn0.75Cu0.25−xCoxGa, �b� lattice parameters as a
function of Co concentration, and �c� cell volumes as a
function of Co concentration.
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atomic radius of Co is a slightly larger than Cu. The lattice
parameters for the samples with x=0.01 and 0.05 are a
=3.892 Å, 3.898 Å and c =6.392 Å, 6.429 Å, respectively.
The average cell volumes of the samples, and the corre-
sponding densities are found to be approximately 97.4 Å3

and �=8.3 g/cm3, respectively.
The magnetization curves as a function of temperature of

Ni2Mn0.75Cu0.25−xCoxGa at a field of 1 kOe are shown in Fig.
2. Similar to the Ni2Mn0.75Cu0.25Ga alloy, the only transition
observed in the magnetization curves of each Co doped
sample is a sharp jump of magnetization at TC. The increase
of TC with increasing Co concentration is also clear
in the figure. The thermal expansion curve of
Ni2Mn0.75Cu0.25−xCoxGa with x=0.02, as a function of tem-
perature is shown in the inset of Fig. 2. The step-like changes
in the thermal expansion curves �typical for a first order
phase transition� provides further evidence that the transition
at TC is of first order. Thus, as it was found for
Ni2Mn0.75Cu0.25Ga,17 all the Co doped samples of the
Ni2Mn0.75Cu0.25−xCoxGa system pass through the magnetic
transition to the ferromagnetic state and a structural transi-
tion to the martensitic phase at the same temperature. This
explains the coexistence of both austenitic and martensitic
phases �as observed in the XRD patterns in Fig. 1� in the
Ni2Mn0.75Cu0.25−xCoxGa samples, where martensitic transfor-
mations take place near room temperature. As shown in Figs.
3�a� and 3�b�,the effective paramagnetic moment �peff�, the
magnetic moments at 5 T, saturation moments �MS� at 5 K,
Curie temperatures �TC�, and the paramagnetic Curie tem-
peratures ��C� are found to increase with increasing Co con-
centration. This suggests that Co substitution results in an
increase of the positive exchange interaction in the system.
In Ref. 16, it was shown that the substitution of Cu and Co
on the Mn sites of Ni2MnGa results in the decrease of the
alloy’s cell volume and in an increase of conduction electron
concentrations. When compared to Co doping, Cu doping
resulted in a more pronounced increase of the conduction
electrons and decrease of the cell volume. Thus little de-
crease of the conduction electron and increase of the cell

parameters by Co doping in Ni2Mn0.75Cu0.25−xCoxGa results
in an increase of the positive exchange interactions and the
values of TM =TC.

The magnetic entropy changes ��Sm� were evaluated
from isothermal magnetization curves using Eq. �1�. The use
of this equation is more appropriate in evaluating �Sm at
second order magnetic transition, however, most often this
equation has been employed to calculate �Sm in the vicinity
of first order phase transition which, according to
Gschneidner et al., is justified in cases where problematic
discontinuities are not present in the phase transition.3 The
majority of the reported �Sm values of Ni-Mn-Ga, and other
ferromagnetic systems3 exhibiting first order phase transi-
tions, are calculated using Eq. �1�. Figure 4�a� shows the
isothermal magnetization curves as a function of field for
Ni2Mn0.75Cu0.20Co0.05Ga. In Fig. 4�b� the hysteresis loops are
shown for the same sample at temperatures where the maxi-
mum �Sm value is obtained. The area between the increasing
and decreasing field segments of the magnetization isotherms
represents the hysteresis loss of the sample �see shaded part
of Fig. 4�b��. As can be seen in this figure, some hysteresis
loss �17.9 J/kg at 332 K� exists in the sample with x=0.05.
The hysteresis loss is considered to be one of the main ob-
stacles for the practical application of a magnetocaloric ma-
terial, as it directly opposes the refrigeration capacity. There-
fore, reduction of the hysteresis loss in this system could be
subject of further studies.

The change of magnetic entropy of
Ni2Mn0.75Cu0.25−xCoxGa as a function of temperature is pre-
sented in Fig. 5. As show in this figure, all the samples pos-
sess peak values of �Sm that are well comparable with the
highest value of 28 J/kg K �227 mJ/cm3 K� at 2 T and 64
J/kg K �513 mJ/cm3 K� at 5 T obtained for x=0.00. The
MCE values in �mJ/cm3 K� units were evaluated because
for application development the �mJ/cm3 K� unit is more
appropriate.3 Although the �Sm values in the
Ni2Mn0.75Cu0.25−xCoxGa system are very high, it occurs in

FIG. 2. Magnetization as a function of increasing temperature of
Ni2Mn0.75Cu.25−xCoxGa, obtained at a field of 1 kOe. The inset shows the
thermal expansion as a function of temperature for the alloy with x=0.02.

FIG. 3. �a� Magnetic moment ��B / f.u.� at 5 T, estimated saturation magnetic
moment, and effective paramagnetic moment �peff� and �b� paramagnetic
Curie temperature, �C, and the Curie temperature, TC, as a function of Co
concentration of Ni2Mn0.75Cu0.25−xCoxGa.
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only a very narrow range of temperature, and therefore might
not be that useful from application point of view. However,
the results demonstrate that the magnetostructural transitions
and the related large magnetic entropy changes in the
Ni2Mn0.75Cu0.25−xCoxGa system can be tuned over a wide
range of temperatures between 308 and 345 K. So it might
be possible to develop composites based on this system that
will exhibit giant MCE in wider range of temperature. As
demonstrated in Fig. 6, the peak �Sm values of
Ni2Mn0.75Cu0.25−xCoxGa are found to depend linearly with
the applied magnetic field of up to 5 T. Thus, higher values
of �Sm can be expected in higher magnetic fields.

IV. CONCLUSION

We have studied the magnetic entropy changes in
Ni2Mn0.75Cu.25−xCoxGa �x=0.01, 0.02, 0.025 0.03, 0.05�.
In Ni2Mn0.75Cu0.25Ga, TM and TC are equal. Partial substitu-
tion of Co in the Cu sites results in a concerted increase in
both TM and TC, preserving the first order magnetostructural
transition. High �Sm peak values have been observed for all
the alloys with the highest value �for x=0.00� of 28 J/kg K

�227 mJ/cm3 K� at 2 T and 64 J/kg K �513 mJ/cm3 K� at 5
T. These experimental results suggest the possibility of tun-
ing the first order magnetostructural transition temperatures
while preserving the large magnetic entropy changes in
Ni2Mn0.75Cu.25−xCoxGa Heulser alloys. We believe that these
results will significantly contribute to the understanding of
the fundamental phenomenon of the phase transitions and
related MCE in Ni-Mn-Ga based Heusler alloys, and thus
will facilitate the development of promising magnetic refrig-
erants for near room temperature magnetic refrigeration ap-
plications.
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Ni2Mn0.75Cu0.20Co0.05Ga at temperature increments of 1
and 0.5 K and �b� the hysteresis loops of
Ni2Mn0.75Cu0.20Co0.05Ga at temperatures where the
maximum entropy is observed.

FIG. 5. Magnetic entropy changes ��Sm� as a function of temperature of
Ni2Mn0.75Cu.25−xCoxGa for a field change ��H� of 5 T �closed symbols� and
2 T �open symbols�.

FIG. 6. Magnetic entropy changes ��Sm� as a function of field change ��H�
of Ni2Mn0.75Cu.25−xCoxGa.
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