2,674 research outputs found

    Cohort Profile: The Zurich Project on the Social Development from Childhood to Adulthood (z-proso)

    Full text link
    The Zurich Project on the Social Development from Childhood to Adulthood (z-proso) began in 2004 in response to the need for a better evidence base to support optimal child social development and prevent crime and violence. Since then, the study has tracked the development of a diverse sample of youths (N = 1,675 in the target sample; ~50% female) from age 7 (n = 1,360) to age 20 (n = 1,180), with primary data collection waves at ages 7, 8, 9, 10, 11, 12, 13, 15, 17, and 20. The study uses a multi-method, multi-informant design that combines teacher, youth, and parent reports with observational and behavioural measures, biosampling, functional imaging, and ecological momentary assessment. Analyses of the data have contributed important evidence to a diversity of topics in child and adolescent development, illuminating the developmental roots of crime and aggression, the impacts of exposure to different forms and combinations of victimisation, and trajectories of mental health and neurodevelopmental symptoms

    Modeling Wind-Driven Circulation in Lake Balaton

    Get PDF
    This paper reports the results achieved to date in a program of research to develop and apply mathematical computer models of water quality in shallow lakes. The portion of the research which is the specific topic of this paper is the development, testing and trial application of a transient three-dimensional model of wind-driven circulation. The results are presented in the context of an application to Lake Balaton in Hungary, a large yet very shallow lake. The paper presents a review of the mathematical formulation of the circulation problem and the major methods used in computer models of wind-driven circulation. Detailed examinations of the model assumptions and parameters are also included. A description of the application lake follows and a three-dimensional model appropriate to shallow lakes is proposed and derived. This model is examined for consistency with Lake Balaton's characteristics, and the important need for congruence with an eventual coupled biogeochemical model of the water quality is described and investigated. The requirement that the length and time scales of the hydrodynamic model and the biogeochemical model be consistent with each other and with the processes of interest in the lake is stressed. The proposed circulation model employs a Galerkin technique to compute the vertical velocity profile using a depth-dependent vertical eddy viscosity. The parameters for this model are determined by calibration using simple hypothetical seiche simulations as a standard. It is found that the function specified for the vertical eddy viscosity is a crucial determinant of the model response. The resulting model and calibration are then successfully verified with historical events on Lake Balaton. A detailed examination of the results of one of these event simulations explores aspects of the model predictions pertinent to the mass transport of water quality constituents. Conclusions of the paper include identification of the need to improve the representation of mass transport in existing models of Balaton's water quality and an agenda for future development of a coupled hydrodynamic-biogeochemical water quality model

    Philosophies in Collision: A Perspective of FLPMA

    Get PDF

    The Role of Lattice QCD in Searches for Violations of Fundamental Symmetries and Signals for New Physics

    Full text link
    This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for Lattice Quantum Chromodynamics (LQCD) in the research frontier in fundamental symmetries and signals for new physics. LQCD, in synergy with effective field theories and nuclear many-body studies, provides theoretical support to ongoing and planned experimental programs in searches for electric dipole moments of the nucleon, nuclei and atoms, decay of the proton, nn-n‾\overline{n} oscillations, neutrinoless double-β\beta decay of a nucleus, conversion of muon to electron, precision measurements of weak decays of the nucleon and of nuclei, precision isotope-shift spectroscopy, as well as direct dark matter detection experiments using nuclear targets. This whitepaper details the objectives of the LQCD program in the area of Fundamental Symmetries within the USQCD collaboration, identifies priorities that can be addressed within the next five years, and elaborates on the areas that will likely demand a high degree of innovation in both numerical and analytical frontiers of the LQCD research.Comment: A whitepaper by the USQCD Collaboration, 30 pages, 9 figure

    The Deformation of an Elastic Substrate by a Three-Phase Contact Line

    Full text link
    Young's classic analysis of the equilibrium of a three-phase contact line ignores the out-of-plane component of the liquid-vapor surface tension. While it has long been appreciated that this unresolved force must be balanced by elastic deformation of the solid substrate, a definitive analysis has remained elusive because conventional idealizations of the substrate imply a divergence of stress at the contact line. While a number of theories of have been presented to cut off the divergence, none of them have provided reasonable agreement with experimental data. We measure surface and bulk deformation of a thin elastic film near a three-phase contact line using fluorescence confocal microscopy. The out-of-plane deformation is well fit by a linear elastic theory incorporating an out-of-plane restoring force due to the surface tension of the gel. This theory predicts that the deformation profile near the contact line is scale-free and independent of the substrate elastic modulus.Comment: 4 pages, 3 figure

    SU(3) breaking in hyperon transition vector form factors

    Get PDF
    We present a calculation of the SU(3)-breaking corrections to the hyperon transition vector form factors to O(p4)\mathcal{O}(p^4) in heavy baryon chiral perturbation theory with finite-range regularisation. Both octet and decuplet degrees of freedom are included. We formulate a chiral expansion at the kinematic point Q2=−(MB1−MB2)2Q^2=-(M_{B_1}-M_{B_2})^2, which can be conveniently accessed in lattice QCD. The two unknown low-energy constants at this point are constrained by lattice QCD simulation results for the Σ−→n\Sigma^-\rightarrow n and Ξ0→Σ+\Xi^0\rightarrow \Sigma^+ transition form factors. Hence we determine lattice-informed values of f1f_1 at the physical point. This work constitutes progress towards the precise determination of ∣Vus∣|V_{us}| from hyperon semileptonic decays
    • …
    corecore