Young's classic analysis of the equilibrium of a three-phase contact line
ignores the out-of-plane component of the liquid-vapor surface tension. While
it has long been appreciated that this unresolved force must be balanced by
elastic deformation of the solid substrate, a definitive analysis has remained
elusive because conventional idealizations of the substrate imply a divergence
of stress at the contact line. While a number of theories of have been
presented to cut off the divergence, none of them have provided reasonable
agreement with experimental data. We measure surface and bulk deformation of a
thin elastic film near a three-phase contact line using fluorescence confocal
microscopy. The out-of-plane deformation is well fit by a linear elastic theory
incorporating an out-of-plane restoring force due to the surface tension of the
gel. This theory predicts that the deformation profile near the contact line is
scale-free and independent of the substrate elastic modulus.Comment: 4 pages, 3 figure