183 research outputs found

    Dose Coefficients for Radionuclides Produced in a Spallation Neutron Source

    Full text link
    Internal and external dose coefficient values have been calculated for 14 anthropogenic radionuclides which are not currently presented in Federal Guidance Reports No. 11, 12, and 13 or Publications 68 and 72 of the International Commission on Radiological Protection. Internal dose coefficient values are reported for inhalation and ingestion of 1 μm and 5 μm particulates along with the f1 values and absorption types for the adult worker. Internal dose coefficient values are also reported for inhalation and ingestion of 1 μm particulates as well as the f1 values and absorption types for members of the public. Additionally, external dose coefficient values for air submersion, exposure to contaminated ground surface, and exposure to soil contaminated to an infinite depth are also presented. Information obtained from this study will be used to support the siting and licensing of future accelerator-driven nuclear initiatives within the U.S. Department of Energy complex, including the Spallation Neutron Source (SNS) and Accelerator Production of Tritium (APT) Projects

    Dose Coefficient (DC) Methodology Report

    Full text link
    The purpose of this report is to present the methodology developed to calculate internal and external dose coefficients for radionuclides produced in the spallation process. Much of the information regarding computer codes in this report comes from various technical manuals and professional papers. References are provided at the beginning of each section for documentation and for the user who requires more specific information. The report also includes the results of applying the methodology to determine dose coefficients for five radionuclides. This effort identified potential areas of concern that will need to be addressed when the methodology is used in the future to generate additional dose coefficients. The Appendices provide student generated notes on the loading of software and more user specific instructions on how to use the various computer codes

    The Procedure for Determining and Quality Assurance Program for the Calculation of Dose Coefficients Using DCAL Software

    Full text link
    The development of a spallation neutron source with a mercury target may lead to the production of rare radionuclides. The dose coefficients for many of these radionuclides have not yet been published. A collaboration of universities and national labs has taken on the task of calculating dose coefficients for the rare radionuclides using the software package: DCAL. The working group developed a procedure for calculating dose coefficients and a quality assurance (QA) program to verify the calculations completed. The first portion of this QA program was to verify that each participating group could independently reproduce the dose coefficients for a known set of radionuclides. The second effort was to divide the group of radionuclides among the independent participants in a manner that assured that each radionuclide would be redundantly and independently calculated. The final aspect of this program was to resolve any discrepancies arising among the participants as a group of the whole. The output of the various software programs for six QA radionuclides, 144Nd, 201Au, 50V, 61Co, 41Ar, and 38S were compared among all members of the working group. Initially, a few differences in outputs were identified. This exercise identified weaknesses in the procedure, which have since been revised. After the revisions, dose coefficients were calculated and compared to published dose coefficients with good agreement. The present efforts involve generating dose coefficients for the rare radionuclides anticipated to be produced from the spallation neutron source should a mercury target be employed

    An Interdatabase Comparison of Nuclear Decay and Structure Data Utilized in the Calculation of Dose Coefficients for Radionuclides Produced in a Spallation Neutron Source

    Full text link
    Internal and external dose coefficient values have been calculated for 14 anthropogenic radionuclides which are not currently presented in Federal Guidance Reports Nos. 11, 12, and 13 or Publications 68 and 72 of the International Commission on Radiological Protection. Internal dose coefficient values are reported for inhalation and ingestion of 1 μm and 5 μm AMAD particulates along with the f1 values and absorption types for the adult worker. Internal dose coefficient values are also reported for inhalation and ingestion of 1 μm AMAD particulates as well as the f1 values and absorption types for members of the public. Additionally, external dose coefficient values for air submersion, exposure to contaminated ground surface, and exposure to soil contaminated to an infinite depth are also presented. Information obtained from this study will be used to support the siting and permitting of future accelerator-driven nuclear initiatives within the U.S. Department of Energy complex, including the Spallation Neutron Source (SNS) and Accelerator Production of Tritium (APT) Projects

    CO\u3csub\u3e2\u3c/sub\u3e and fire influence tropical ecosystem stability in response to climate change

    Get PDF
    Interactions between climate, fire and CO2 are believed to play a crucial role in controlling the distributions of tropical woodlands and savannas, but our understanding of these processes is limited by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated record of vegetation, climate and fire from West Africa to examine the role of these interactions on tropical ecosystem stability. We find that increased aridity between 28–15 kyr B.P. led to the widespread expansion of tropical grasslands, but that frequent fires and low CO2 played a crucial role in stabilizing these ecosystems, even as humidity changed. This resulted in an unstable ecosystem state, which transitioned abruptly from grassland to woodlands as gradual changes in CO2 and fire shifted the balance in favor of woody plants. Since then, high atmospheric CO2 has stabilized tropical forests by promoting woody plant growth, despite increased aridity. Our results indicate that the interactions between climate, CO2 and fire can make tropical ecosystems more resilient to change, but that these systems are dynamically unstable and potentially susceptible to abrupt shifts between woodland and grassland dominated states in the future

    Improving an Active-Optical Reflectance Sensor Algorithm Using Soil and Weather Information

    Get PDF
    Active-optical reflectance sensors (AORS) use light reflectance characteristics from a crop canopy as an indicator of the plant’s N health. However, studies have shown AORS algorithms used in conjunction with measured reflectance characteristics for corn (Zea maysL.) N fertilizer rate recommendations are not consistently accurate. Our objective was to determine if soil and weather information could be utilized with an AORS algorithm developed at the University of Missouri (ALGMU) to improve in-season (∼V9 corn development stage) N fertilizer recommendations. Nitrogen response trials were conducted across eight states over three growing seasons, totaling 49 sites with soils ranging in productivity. Nitrogen fertilizer rates according to the ALGMU were compared to economic optimal nitrogen rate (EONR). Without soil and weather information included, the root mean square error (RMSE) of the difference between ALGMU and EONR (MUDIFF) was 81 and 74 kg N ha–1 for treatments receiving 0 and 45 kg N ha–1 applied at planting, respectively. When ALGMU was adjusted using weather (seasonal precipitation and distribution prior to sidedress) and soil clay content, the RMSE was reduced by 24 to 26 kg N ha–1. Without adjustment, 20 and 29% of sites were within 34 kg N ha–1 of EONR with 0 and 45 kg N ha–1 at planting, respectively. But with adjustment for soil and weather data, 45 and 51% of sites were within 34 kg N ha–1 of EONR. These results show that weather and soil information could be used to improve ALGMU N recommendation performance

    Scaling of the B and D meson spectrum in lattice QCD

    Get PDF
    We give results for the BB and the DD meson spectrum using NRQCD on the lattice in the quenched approximation. The masses of radially and orbitally excited states are calculated as well as SS-wave hyperfine and PP-wave fine structure. Radially excited PP-states are observed for the first time. Radial and orbital excitation energies match well to experiment, as does the strange-non-strange SS-wave splitting. We compare the light and heavy quark mass dependence of various splittings to experiment. Our BB-results cover a range in lattice spacings of more than a factor of two. Our DD-results are from a single lattice spacing and we compare them to numbers in the literature from finer lattices using other methods. We see no significant dependence of physical results on the lattice spacing. PACS: 11.15.Ha 12.38.Gc 14.40.Lb 14.40.NdComment: 78 pages, 29 tables, 30 figures Revised version. Minor corrections to spelling and wordin

    Active-Optical Reflectance Sensing Corn Algorithms Evaluated over the United States Midwest Corn Belt

    Get PDF
    Uncertainty exists with corn (Zea mays L.) N management due to year-to-year variation in crop N need, soil N supply, and N loss from leaching, volatilization, and denitrification. Active-optical reflectance sensing (AORS) has proven effective in some fields for generating N fertilizer recommendations that improve N use efficiency, but locally derived (e.g., within a US state) AORS algorithms have not been tested simultaneously across a broad region. The objective of this research was to evaluate locally developed AORS algorithms across the US Midwest Corn Belt region for making in-season corn N recommendations. Forty-nine N response trials were conducted across eight states and three growing seasons. Reflectance measurements were collected and sidedress N rates (45–270 kg N ha–1 on 45 kg ha–1increments) applied at approximately V9 corn development stage. Nitrogen recommendation rates from AORS algorithms were compared with the end-of-season calculated economic optimal N rate (EONR). No algorithm was within 34 kg N ha–1 of EONR \u3e 50% of the time. Average recommendations differed from EONR 81 to 147 kg N ha–1 with no N applied at planting and 74 to 118 kg N ha–1 with 45 kg of N ha–1 at planting, indicating algorithms performed worse with no N applied at planting. With some algorithms, utilizing red edge instead of the red reflectance improved N recommendations. Results demonstrate AORS algorithms developed under a particular set of conditions may not, at least without modification, perform very well in regions outside those within which they were developed

    Digital futures challenge-based learning in Higher Education in Europe: The DIFUCH Erasmus+ Project

    Get PDF
    Within DIFUCH, we are developing innovative challenge-based pedagogies, tools and platforms for the virtual delivery of a joint programme within a groundbreaking-breaking and flexible academic structure in Europe. This Erasmus+ project is focused on delivering new multi-disciplinary, transnational, cross-sectional future skills-orientated modules and learning pathways that address societal challenges. In this paper, we present the current work of DIFUCH to develop an innovative programme underpinned by Challenge Based Learning (CBL) that addresses local and global societal challenges and strengthens interactions between education, research, and external stakeholders for a positive effect on our communities. This project facilitates the improvement of learning outcomes vis-à-vis university learners' perception of social responsibility, their ability to deal with complex societal challenges from social and economic stability to global warming, their ability to put knowledge into practice, team building and communications skills.This work has been supported by Erasmus Plus KA2 within the project 2021-1-PT01-KA220-HED-000023536.info:eu-repo/semantics/publishedVersio

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    • …
    corecore