15 research outputs found
Surface characterization of hydrogen charged and uncharged alpha-2 and gamma titanium aluminide alloys using AES and REELS
The surfaces of selected uncharged and hydrogen charged alpha-2 and gamma titanium aluminide alloys with Nb additions were characterized by Auger electron (AES) and reflected electron energy loss (REELS) spectroscopy. The alloy surfaces were cleaned before analysis at room temperature by ion sputtering. The low energy (500 eV) ion sputtering process preferentially sputtered the surface concentration. The surface concentrations were determined by comparing AES data from the alloys with corresponding data from elemental references. No differences were observed in the Ti or Nb Auger spectra for the uncharged and hydrogen charged alloys, even though the alpha-2 alloy had 33.4 atomic percent dissolved hydrogen. Also, no differences were observed in the AES spectra when hydrogen was adsorbed from the gas phase. Bulk plasmon energy shifts were observed in all alloys. The energy shifts were induced either by dissolved hydrogen (alpha-2 alloy) or hydrogen adsorbed from the gas phase (alpha-2 and gamma alloys). The adsorption induced plasmon energy shifts were greatest for the gamma alloy and cp-Ti metal
An investigation of the kinetics for hydrogen chemisorption on iron metal surfaces
A quasi-isothermal approach was used to study the kinetics of hydrogen and hydrogen sulfide chemisorption onto iron film in an effort to understand the environmental degradation of steels. The coverage of chemisorbed hydrogen or chemisorbed sulfur was observed as a function of time for fixed conditions of substrate temperature. Auger electron spectroscopy was used to observe the sulfur and chemisorption-induced resistance change was employed to monitor hydrogen coverage. To compare the results obtained from studying the kinetics by two different techniques, the kinetics of oxygen chemisorption onto iron films was also studied. A reaction model utilized to interpret the H2/Fe2 chemisorption kinetics was applied to data from an earlier study on the desorption kinetics for H2 chemisorbed onto nicket films in the vicinity of the Curie temperature of the film. This analysis permitted a separation of the gross desorption process into individual components so that the influence of the magnetic phase transition on the rate constants could be determined
An investigation of the kinetics of hydrogen chemisorption on iron metal surfaces
The isothermal kinetics of H2, H2S, and O2 chemisorption onto epitaxially grown (III) oriented Fe films were studied. The measurements were made using the techniques of chemisorption induced resistance change and Auger electron spectroscopy (for adsorbed sulfur and oxygen). Also the origin of the chemisorption induced resistance change for these systems and its applicability to kinetic measurements were established. The chemisorption kinetics were interpreted as dissociative chemisorption via an adsorbed molecular species. The applicable rate constants were established. In none of the studies were the rate constants observed to be coverage dependent. By comparing the temperature dependence of the rate constants with absolute rate theory, the binding energies and activation energies of all the kinetic processes were obtained for the H2/Fe system. The initial sticking coefficient was pressure dependent for both the H2/Fe and H2S/Fe systems. This results from the step between the adsorbed molecular state and the dissociated chemisorbed state being the rate limiting step for absorption at certain pressures and temperatures. Estimates were obtained for the temperature dependence of the rate constants for the O2/Fe system
Chemisorption kinetics of hydrogen on evaporated iron films
Measurements were made of the isothermal adsorption-desorption kinetics for H2 chemisorbed onto Fe films. The chemisorption process is observed to proceed via a precursor state of adsorbed molecular hydrogen similar to the H2-Ni system. The first measurements of the activation energy for desorption, and estimates of the values of the fast kinetic rates between the precursor and chemisorbed states are reported. Adsorption into the precursor state does not appear to be activated, but the process connecting the precursor state with the chemisorbed state will, under certain circumstances, be a rate limiting step for adsorption. The effects of contamination of the surface are evidenced in the measurements
An Investigation of the Effect of Surface Impurities on the Adsorption Kinetics of Hydrogen Chemisorbed onto Iron
The original goal of this program was to investigate the effect surface impurities have on the heterogeneous kinetic processes of those molecular species which produce gaseous hydrogen degradation of the mechanical properties of metallic structural materials. However, shortly after the initiation of the original program, the program's NASA Technical Monitor, Dr. Howard Nelson, requested that the effort supported by this Co-operative Agreement be redirected to study more pressing materials issues associated to the development of the National Aero-Space Plane (NASP). The results of these efforts are outlined in this report. Detailed discussions of specific work, including experimental techniques and procedures, will be found in the publications listed with the subsection discussing that specific work as well and in Section 5. No inventions were generated or disclosed within this Agreement
An Investigation of the Effect of Surface Impurities on the Adsorption Kinetics of Hydrogen Chemisorbed onto Iron
The original goal of this program was to investigate the effect surface impurities have on the heterogeneous kinetic processes of those molecular species which produce gaseous hydrogen degradation of the mechanical properties of metallic structural materials. However, shortly after the initiation of the original program, the program's NASA Technical Monitor, Dr. Howard Nelson, requested that the effort supported by this Co-operative Agreement be redirected to study more pressing materials issues associated to the development of the National Aero-Space Plane (NASP). The results of these efforts are outlined in this report. Detailed discussions of specific work, including experimental techniques and procedures, will be found in the publications listed with the subsection discussing that specific work as well and in Section 5. No inventions were generated or disclosed within this Agreement