research

An investigation of the kinetics of hydrogen chemisorption on iron metal surfaces

Abstract

The isothermal kinetics of H2, H2S, and O2 chemisorption onto epitaxially grown (III) oriented Fe films were studied. The measurements were made using the techniques of chemisorption induced resistance change and Auger electron spectroscopy (for adsorbed sulfur and oxygen). Also the origin of the chemisorption induced resistance change for these systems and its applicability to kinetic measurements were established. The chemisorption kinetics were interpreted as dissociative chemisorption via an adsorbed molecular species. The applicable rate constants were established. In none of the studies were the rate constants observed to be coverage dependent. By comparing the temperature dependence of the rate constants with absolute rate theory, the binding energies and activation energies of all the kinetic processes were obtained for the H2/Fe system. The initial sticking coefficient was pressure dependent for both the H2/Fe and H2S/Fe systems. This results from the step between the adsorbed molecular state and the dissociated chemisorbed state being the rate limiting step for absorption at certain pressures and temperatures. Estimates were obtained for the temperature dependence of the rate constants for the O2/Fe system

    Similar works