17,976 research outputs found

    Network calculus for parallel processing

    Full text link
    In this note, we present preliminary results on the use of "network calculus" for parallel processing systems, specifically MapReduce

    The ground state entanglement in the XXZXXZ model

    Full text link
    In this paper, we investigate spin entanglement in the XXZXXZ model defined on a dd-dimensional bipartite lattice. The concurrence, a measure of the entanglement between two spins, is analyzed. We prove rigorously that the ground state concurrence reaches maximum at the isotropic point. For dimensionality d≥2d \ge 2, the concurrence develops a cusp at the isotropic point and we attribute it to the existence of magnetic long-range order.Comment: 5 pages, 2 figure

    Unconventional Spin Density Waves in Dipolar Fermi Gases

    Full text link
    The conventional spin density wave (SDW) phase (Overhauser, 1962), as found in antiferromagnetic metal for example (Fawcett 1988), can be described as a condensate of particle-hole pairs with zero angular momentum, â„“=0\ell=0, analogous to a condensate of particle-particle pairs in conventional superconductors. While many unconventional superconductors with Cooper pairs of finite â„“\ell have been discovered, their counterparts, density waves with non-zero angular momenta, have only been hypothesized in two-dimensional electron systems (Nayak, 2000). Using an unbiased functional renormalization group analysis, we here show that spin-triplet particle-hole condensates with â„“=1\ell=1 emerge generically in dipolar Fermi gases of atoms (Lu, Burdick, and Lev, 2012) or molecules (Ospelkaus et al., 2008; Wu et al.) on optical lattice. The order parameter of these exotic SDWs is a vector quantity in spin space, and, moreover, is defined on lattice bonds rather than on lattice sites. We determine the rich quantum phase diagram of dipolar fermions at half-filling as a function of the dipolar orientation, and discuss how these SDWs arise amidst competition with superfluid and charge density wave phases.Comment: 5 pages, 3 figure

    Structure and magnetic properties of nanostructured Dy/transition-metal multilayered films

    Get PDF
    We report the results of magnetic and microstructural studies for T/Dy (T=Fe, Co, Ni) compositionally modulated films prepared in a multiple-gun sputtering system. The perpendicular anisotropy and magnetization were measured systematically for X-Ă… Fe/Y-Ă… Dy and X-Ă… Co/Y-Ă… Dy films. The layer-thickness dependence of the magnetization for Co/Dy and Fe/Dy was interpreted in terms of the antiparallel coupling between transition-metal and Dy magnetic moments. For Co/Dy films the ranges of X and Y required for perpendicular anisotropy were determined. A comparision of the structural and magnetic properties of Ni/Dy, Co/Dy, and Fe/Dy is given and the origin of the perpendicular anisotropy is discussed. Journal of Applied Physics is copyrighted by The American Institute of Physics

    The new two-way street of Chinese direct investment in the European Union

    Get PDF
    In the light of growing trade and investment flows, the investment relationship between the European Union (EU) and China needs to be revisited. Chinese firms face significant barriers in entering and operating in the European market whilst the European economy needs more investment. Support for investment may be crucial for both the EU and China to improve economic growth. The prospective International Investment Agreement (IIA) seeks to achieve this goal. This paper focuses on Chinese inward foreign direct investment into the EU and on the potential for generating greater mutual EU–China flows, improved market access and investor protection under the IIA

    Magnetic fluctuations in n-type high-TcT_c superconductors reveal breakdown of fermiology

    Full text link
    By combining experimental measurements of the quasiparticle and dynamical magnetic properties of optimally electron-doped Pr0.88_{0.88}LaCe0.12_{0.12}CuO4_4 with theoretical calculations we demonstrate that the conventional fermiology approach cannot possibly account for the magnetic fluctuations in these materials. In particular, we perform tunneling experiments on the very same sample for which a dynamical magnetic resonance has been reported recently and use photoemission data by others on a similar sample to characterize the fermionic quasiparticle excitations in great detail. We subsequently use this information to calculate the magnetic response within the conventional fermiology framework as applied in a large body of work for the hole-doped superconductors to find a profound disagreement between the theoretical expectations and the measurements: this approach predicts a step-like feature rather than a sharp resonance peak, it underestimates the intensity of the resonance by an order of magnitude, it suggests an unreasonable temperature dependence of the resonance, and most severely, it predicts that most of the spectral weight resides in incommensurate wings which are a key feature of the hole-doped cuprates but have never been observed in the electron-doped counterparts. Our findings strongly suggest that the magnetic fluctuations reflect the quantum-mechanical competition between antiferromagnetic and superconducting orders.Comment: 10 pages, 9 figures, 1 tabl

    Galilean invariance of lattice Boltzmann models

    Full text link
    It is well-known that the original lattice Boltzmann (LB) equation deviates from the Navier-Stokes equations due to an unphysical velocity dependent viscosity. This unphysical dependency violates the Galilean invariance and limits the validation domain of the LB method to near incompressible flows. As previously shown, recovery of correct transport phenomena in kinetic equations depends on the higher hydrodynamic moments. In this Letter, we give specific criteria for recovery of various transport coefficients. The Galilean invariance of a general class of LB models is demonstrated via numerical experiments

    Effect of Native Defects on Optical Properties of InxGa1-xN Alloys

    Full text link
    The energy position of the optical absorption edge and the free carrier populations in InxGa1-xN ternary alloys can be controlled using high energy 4He+ irradiation. The blue shift of the absorption edge after irradiation in In-rich material (x > 0.34) is attributed to the band-filling effect (Burstein-Moss shift) due to the native donors introduced by the irradiation. In Ga-rich material, optical absorption measurements show that the irradiation-introduced native defects are inside the bandgap, where they are incorporated as acceptors. The observed irradiation-produced changes in the optical absorption edge and the carrier populations in InxGa1-xN are in excellent agreement with the predictions of the amphoteric defect model
    • …
    corecore