96 research outputs found

    Small Changes in Enzyme Function can Lead to Surprisingly Large In Vivo Effects during Evolution

    Get PDF

    Small changes in enzyme function can lead to surprisingly large fitness effects during adaptive evolution of antibiotic resistance

    Get PDF
    In principle, evolutionary outcomes could be largely predicted if all of the relevant physicochemical variants of a particular protein function under selection were known and integrated into an appropriate physiological model. We have tested this principle by generating a family of variants of the tetracycline resistance protein TetX2 and identified the physicochemical properties most correlated with organismal fitness. Surprisingly, small changes in the Km(MCN), less than twofold, were sufficient to produce highly successful adaptive mutants over clinically relevant drug concentrations. We then built a quantitative model directly relating the in vitro physicochemical properties of the mutant enzymes to the growth rates of bacteria carrying a single chromosomal copy of the tet(X2) variants over a wide range of minocycline (MCN) concentrations. Importantly, this model allows the prediction of enzymatic properties directly from cellular growth rates as well as the physicochemical-fitness landscape of TetX2. Using experimental evolution and deep sequencing to monitor the allelic frequencies of the seven most biochemically efficient TetX2 mutants in 10 independently evolving populations, we showed that the model correctly predicted the success of the two most beneficial variants tet(X2)T280A and tet(X2)N371I. The structure of the most efficient variant, TetX2T280A, in complex with MCN at 2.7 Å resolution suggests an indirect effect on enzyme kinetics. Taken together, these findings support an important role for readily accessible small steps in protein evolution that can, in turn, greatly increase the fitness of an organism during natural selection

    An Adaptive Mutation in Enterococcus faecium LiaR Associated with Antimicrobial Peptide Resistance Mimics Phosphorylation and Stabilizes LiaR in an Activated State

    Get PDF
    The cyclic antimicrobial lipopeptide daptomycin (DAP) triggers the LiaFSR membrane stress response pathway in enterococci and many other Gram-positive organisms. LiaR is the response regulator that, upon phosphorylation, binds in a sequence-specific manner to DNA to regulate transcription in response to membrane stress. In clinical settings, non-susceptibility to DAP by Enterococcus faecium is correlated frequently with a mutation in LiaR of Trp73 to Cys (LiaRW73C). We have determined the structure of the activated E. faecium LiaR protein at 3.2 Å resolution and, in combination with solution studies, show that the activation of LiaR induces the formation of a LiaR dimer that increases LiaR affinity at least 40-fold for the extended regulatory regions upstream of the liaFSR and liaXYZ operons. In vitro, LiaRW73C induces phosphorylation-independent dimerization of LiaR and provides a biochemical basis for non-susceptibility to DAP by the upregulation of the LiaFSR regulon. A comparison of the E. faecalis LiaR, E. faecium LiaR, and the LiaR homolog from Staphylococcus aureus (VraR) and the mutations associated with DAP resistance suggests that physicochemical properties such as oligomerization state and DNA specificity, although tuned to the biology of each organism, share some features that could be targeted for new antimicrobials

    Evolutionary fates within a microbial population highlight an essential role for protein folding during natural selection

    Get PDF
    Physicochemical properties of molecules can be linked directly to evolutionary fates of a population in a quantitative and predictive manner.Reversible- and irreversible-folding pathways must be accounted for to accurately determine in vitro kinetic parameters (KM and kcat) at temperatures or conditions in which a significant fraction of free enzyme is unfolded.In vivo population dynamics can be reproduced using in vitro physicochemical measurements within a model that imposes an activity threshold above which there is no added fitness benefit

    Whole-genome analysis of a daptomycin-susceptible Enterococcus faecium strain and its daptomycin-resistant variant arising during therapy

    Get PDF
    Development of daptomycin (DAP) resistance in Enterococcus faecalis has recently been associated with mutations in genes encoding proteins with two main functions: (i) control of the cell envelope stress response to antibiotics and antimicrobial peptides (LiaFSR system) and (ii) cell membrane phospholipid metabolism (glycerophosphoryl diester phosphodiesterase and cardiolipin synthase [cls]). However, the genetic bases for DAP resistance in Enterococcus faecium are unclear. We performed whole-genome comparative analysis of a clinical strain pair, DAP-susceptible E. faecium S447 and its DAP-resistant derivative R446, which was recovered from a single patient during DAP therapy. By comparative whole-genome sequencing, DAP resistance in R446 was associated with changes in 8 genes. Two of these genes encoded proteins involved in phospholipid metabolism: (i) an R218Q substitution in Cls and (ii) an A292G reversion in a putative cyclopropane fatty acid synthase enzyme. The DAP-resistant derivative R446 also exhibited an S333L substitution in the putative histidine kinase YycG, a member of the YycFG system, which, similar to LiaFSR, has been involved in cell envelope homeostasis and DAP resistance in other Gram-positive cocci. Additional changes identified in E. faecium R446 (DAP resistant) included two putative proteins involved in transport (one for carbohydrate and one for sulfate) and three enzymes predicted to play a role in general metabolism. Exchange of the “susceptible” cls allele from S447 for the “resistant” one belonging to R446 did not affect DAP susceptibility. Our results suggest that, apart from the LiaFSR system, the essential YycFG system is likely to be an important mediator of DAP resistance in some E. faecium strains

    Antimicrobial sensing coupled with cell membrane remodeling mediates antibiotic resistance and virulence in Enterococcus faecalis.

    Get PDF
    Bacteria have developed several evolutionary strategies to protect their cell membranes (CMs) from the attack of antibiotics and antimicrobial peptides (AMPs) produced by the innate immune system, including remodeling of phospholipid content and localization. Multidrug-resistant Enterococcus faecalis, an opportunistic human pathogen, evolves resistance to the lipopeptide daptomycin and AMPs by diverting the antibiotic away from critical septal targets using CM anionic phospholipid redistribution. The LiaFSR stress response system regulates this CM remodeling via the LiaR response regulator by a previously unknown mechanism. Here, we characterize a LiaR-regulated protein, LiaX, that senses daptomycin or AMPs and triggers protective CM remodeling. LiaX is surface exposed, and in daptomycin-resistant clinical strains, both LiaX and the N-terminal domain alone are released into the extracellular milieu. The N-terminal domain of LiaX binds daptomycin and AMPs (such as human LL-37) and functions as an extracellular sentinel that activates the cell envelope stress response. The C-terminal domain of LiaX plays a role in inhibiting the LiaFSR system, and when this domain is absent, it leads to activation of anionic phospholipid redistribution. Strains that exhibit LiaX-mediated CM remodeling and AMP resistance show enhanced virulence in the Caenorhabditis elegans model, an effect that is abolished in animals lacking an innate immune pathway crucial for producing AMPs. In conclusion, we report a mechanism of antibiotic and AMP resistance that couples bacterial stress sensing to major changes in CM architecture, ultimately also affecting host-pathogen interactions
    corecore