15 research outputs found

    Bifidobacterium Is Enriched in Gut Microbiome of Kashmiri Women with Polycystic Ovary Syndrome

    Get PDF
    Polycystic ovary syndrome (PCOS) is a very common endocrine condition in women in India. Gut microbiome alterations were shown to be involved in PCOS, yet it is remarkably understudied in Indian women who have a higher incidence of PCOS as compared to other ethnic populations. During the regional PCOS screening program among young women, we recruited 19 drug naive women with PCOS and 20 control women at the Sher-i-Kashmir Institute of Medical Sciences, Kashmir, North India. We profiled the gut microbiome in faecal samples by 16S rRNA sequencing and included 40/58 operational taxonomic units (OTUs) detected in at least 1/3 of the subjects with relative abundance (RA) ≥ 0.1%. We compared the RAs at a family/genus level in PCOS/non-PCOS groups and their correlation with 33 metabolic and hormonal factors, and corrected for multiple testing, while taking the variation in day of menstrual cycle at sample collection, age and BMI into account. Five genera were significantly enriched in PCOS cases: Sarcina, Megasphaera, and previously reported for PCOS Bifidobacterium, Collinsella and Paraprevotella confirmed by different statistical models. At the family level, the relative abundance of Bifidobacteriaceae was enriched, whereas Peptococcaceae was decreased among cases. We observed increased relative abundance of Collinsella and Paraprevotella with higher fasting blood glucose levels, and Paraprevotella and Alkalibacterium with larger hip, waist circumference, weight, and Peptococcaceae with lower prolactin levels. We also detected a novel association between Eubacterium and follicle-stimulating hormone levels and between Bifidobacterium and alkaline phosphatase, independently of the BMI of the participants. Our report supports that there is a relationship between gut microbiome composition and PCOS with links to specific reproductive health metabolic and hormonal predictors in Indian women

    An integrated development hardware design for an advanced wireless Ag/AgCl sensor to acquiring biosignals form ornamental plants

    No full text
    Electrical signals (biosignals) in higher plants could be the information carriers in intracellular and intercellular communication during environmental changes and pathogens attack. Biosignals are currently acquiring by Ag/AgCl electrode attached on plants' shoots and leaves. These plants are usually placed in Faraday's cage (FC) to eliminate the signal-noise. In this paper, we present an integrated hardware design for the development of an advanced wireless Ag/AgCl sensor for plants' biosignals measurements. In order to avoid white Gaussian noise, 50 Hz power line noise as well as the noise of the operating electrical devices, microcontroller embedded systems and IEEE 802.15.4 communication protocol was used for the system performance. The electrical potential was measured on leaves of Chrysanthemum (Chrysanthemum moriflorum) plants using Ag/AgCl electrodes and recorded in data logger: i) placed inside the FC, ii) in a distance of 15 meter away from FC, connected by interface circuit via wire and iii) in a distance of 60 meter away from FC using a wireless embedded system for data transfer. The wireless connection between embedded systems of Ag/AgCl electrodes did not show signals errors. The wire transmission of biosignal showed harmonics distortions in spectral analysis and the amplitude of biosignal showed modification at 50%. The same result was showed under the effect of a low power RF signal (1- 3,3 Mhz), which transmitted near the location of FC

    Molecular Defects of the CYP27A2 Gene in Greek-Cypriot Patients with Congenital Adrenal Hyperplasia

    No full text
    Background/Aim: To determine the mutations in the CYP21A2 gene in Greek-Cypriots with congenital adrenal hyperplasia (CAH) and attempt a genotype-phenotype correlation. Subjects and Methods: Molecular analysis was performed by multiplex ligation-dependent probe amplification and direct sequencing of PCR products of the CYP21A2 gene in 32 CAH patients. Results: The most frequent genetic defect in the classic salt-wasting and simple virilizing forms was the IVS2-13A/C > G (55%) mutation, followed by Large lesion (20%) and in the non-classical form, the p.V281 L (79.5%). Genotypes were categorized in 4 mutation groups (null, A, B and C). All 3 patients in the null group manifested the salt-wasting form and all 6 patients in mutation group A presented with the classical form. One patient in group B had the simple virilizing form and 22 patients in group C exhibited the non-classical form. Conclusion: The spectrum of mutations of the CYP21A2 gene in our population is comparable to the most common reported in similar ethnic groups. The knowledge of the ethnic specificity of the CYP21A2 mutations represents a valuable diagnostic tool for all forms of CAH. Copyright (C) 2010 S. Karger AG, Base

    Unraveling the Dynamics of Omicron (BA.1, BA.2, and BA.5) Waves and Emergence of the Deltacton Variant: Genomic Epidemiology of the SARS-CoV-2 Epidemic in Cyprus (Oct 2021–Oct 2022)

    No full text
    Commencing in December 2019 with the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), three years of the coronavirus disease 2019 (COVID-19) pandemic have transpired. The virus has consistently demonstrated a tendency for evolutionary adaptation, resulting in mutations that impact both immune evasion and transmissibility. This ongoing process has led to successive waves of infections. This study offers a comprehensive assessment spanning genetic, phylogenetic, phylodynamic, and phylogeographic dimensions, focused on the trajectory of the SARS-CoV-2 epidemic in Cyprus. Based on a dataset comprising 4700 viral genomic sequences obtained from affected individuals between October 2021 and October 2022, our analysis is presented. Over this timeframe, a total of 167 distinct lineages and sublineages emerged, including variants such as Delta and Omicron (1, 2, and 5). Notably, during the fifth wave of infections, Omicron subvariants 1 and 2 gained prominence, followed by the ascendancy of Omicron 5 in the subsequent sixth wave. Additionally, during the fifth wave (December 2021–January 2022), a unique set of Delta sequences with genetic mutations associated with Omicron variant 1, dubbed “Deltacron”, was identified. The emergence of this phenomenon initially evoked skepticism, characterized by concerns primarily centered around contamination or coinfection as plausible etiological contributors. These hypotheses were predominantly disseminated through unsubstantiated assertions within the realms of social and mass media, lacking concurrent scientific evidence to validate their claims. Nevertheless, the exhaustive molecular analyses presented in this study have demonstrated that such occurrences would likely lead to a frameshift mutation—a genetic aberration conspicuously absent in our provided sequences. This substantiates the accuracy of our initial assertion while refuting contamination or coinfection as potential etiologies. Comparable observations on a global scale dispelled doubt, eventually leading to the recognition of Delta-Omicron variants by the scientific community and their subsequent monitoring by the World Health Organization (WHO). As our investigation delved deeper into the intricate dynamics of the SARS-CoV-2 epidemic in Cyprus, a discernible pattern emerged, highlighting the major role of international connections in shaping the virus’s local trajectory. Notably, the United States and the United Kingdom were the central conduits governing the entry and exit of the virus to and from Cyprus. Moreover, notable migratory routes included nations such as Greece, South Korea, France, Germany, Brazil, Spain, Australia, Denmark, Sweden, and Italy. These empirical findings underscore that the spread of SARS-CoV-2 within Cyprus was markedly influenced by the influx of new, highly transmissible variants, triggering successive waves of infection. This investigation elucidates the emergence of new waves of infection subsequent to the advent of highly contagious and transmissible viral variants, notably characterized by an abundance of mutations localized within the spike protein. Notably, this discovery decisively contradicts the hitherto hypothesis of seasonal fluctuations in the virus’s epidemiological dynamics. This study emphasizes the importance of meticulously examining molecular genetics alongside virus migration patterns within a specific region. Past experiences also emphasize the substantial evolutionary potential of viruses such as SARS-CoV-2, underscoring the need for sustained vigilance. However, as the pandemic’s dynamics continue to evolve, a balanced approach between caution and resilience becomes paramount. This ethos encourages an approach founded on informed prudence and self-preservation, guided by public health authorities, rather than enduring apprehension. Such an approach empowers societies to adapt and progress, fostering a poised confidence rooted in well-founded adaptation

    Variations in the 3′UTR of the CYP21A2 Gene in Heterozygous Females with Hyperandrogenaemia

    No full text
    Heterozygosity for CYP21A2 mutations in females is possibly related to increased risk of developing clinical hyperandrogenism. The present study was designed to seek evidence on the phenotype-genotype correlation in female children, adolescents, and women with CYP21A2 mutations and variants in the 3′UTR region of the gene. Sixty-six patients out of the 169 were identified as carriers of CYP21A2 mutations. Higher values of stimulated 17 hydroxyprogesterone (17-OHP) levels were found in the carriers of the p.Val281Leu mutation compared to the carriers of other mutations (mean: 24.7 nmol/l versus 15.6 nmol/l). The haplotype of the ∗52C>T, ∗440C>T, and ∗443T>C in the 3′UTR was identical in all heterozygous patients with p.Val281Leu and the haplotype of the ∗12C>T and ∗52C>T was identical in all heterozygous patients with the p.Gln318∗. In conclusion, hyperandrogenaemic females are likely to bear heterozygous CYP21A2 mutations. Carriers of the mild p.Val281Leu mutation are at higher risk of developing hyperandrogenism than the carriers of more severe mutations. The identification of variants in the 3′UTR of CYP21A2 in combination with the heterozygous mutation may be associated with the mild form of nonclassic congenital adrenal hyperplasia and reveal the importance of analyzing the CYP21A2 untranslated regions for the appropriate management of this category of patients

    Evolution of prokaryotic colonisation of greenhouse plastics discarded into the environment

    Get PDF
    Current knowledge on the capacity of plastics as vectors of microorganisms and their ability to transfer microorganisms between different habitats (i.e. air, soil and river) is limited. The objective of this study was to characterise the evolution of the bacterial community adhered to environmental plastics [low-density polyethylene (LDPE)] across different environments from their point of use to their receiving environment destination in the sea. The study took place in a typical Mediterranean intermittent river basin in Larnaka, Cyprus, characterised by a large greenhouse area whose plastic debris may end up in the sea due to mismanagement. Five locations were selected to represent the environmental fate of greenhouse plastics from their use, through their abandonment in soil and subsequent transport to the river and the sea, taking samples of plastics and the surrounding environments (soil and water). The bacterial community associated with each sample was studied by 16S rRNA metabarcoding; also, the main physicochemical parameters in each environmental compartment were analysed to understand these changes. The identification and chemical changes in greenhouse plastics were tracked using Attenuated Total Reflection Fourier Transform Infra-red spectroscopy (ATR-FTIR). Scanning Electron Microscope (SEM) analysis demonstrated an evolution of the biofilm at each sampling location. β-diversity studies showed that the bacterial community adhered to plastics was significantly different from that of the surrounding environment only in samples taken from aqueous environments (freshwater and sea) (p-value p-value > 0.05). The environmental parameters (pH, salinity, total nitrogen and total phosphorus) explained the differences observed at each location to a limited extent. Furthermore, bacterial community differences among samples were lower in plastics collected from the soil than in plastics taken from rivers and seawater. Six genera (Flavobacterium, Altererythrobacter, Acinetobacter, Pleurocapsa, Georgfuchsia and Rhodococcus) were detected in the plastic, irrespective of the sampling location, confirming that greenhouse plastics can act as possible vectors of microorganisms between different environments: from their point of use, through a river system to the final coastal receiving environment. In conclusion, this study confirms the ability of greenhouse plastics to transport bacteria, including pathogens, between different environments. Future studies should evaluate these risks by performing complete sequencing metagenomics to decipher the functions of the plastisphere
    corecore