125 research outputs found

    Numerical Modeling of Two-Dimensional Flow Over A Hill In an Open Channel

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Ensemble Analysis of Angiogenic Growth in Three-Dimensional Microfluidic Cell Cultures

    Get PDF
    We demonstrate ensemble three-dimensional cell cultures and quantitative analysis of angiogenic growth from uniform endothelial monolayers. Our approach combines two key elements: a micro-fluidic assay that enables parallelized angiogenic growth instances subject to common extracellular conditions, and an automated image acquisition and processing scheme enabling high-throughput, unbiased quantification of angiogenic growth. Because of the increased throughput of the assay in comparison to existing three-dimensional morphogenic assays, statistical properties of angiogenic growth can be reliably estimated. We used the assay to evaluate the combined effects of vascular endothelial growth factor (VEGF) and the signaling lipid sphingoshine-1-phosphate (S1P). Our results show the importance of S1P in amplifying the angiogenic response in the presence of VEGF gradients. Furthermore, the application of S1P with VEGF gradients resulted in angiogenic sprouts with higher aspect ratio than S1P with background levels of VEGF, despite reduced total migratory activity. This implies a synergistic effect between the growth factors in promoting angiogenic activity. Finally, the variance in the computed angiogenic metrics (as measured by ensemble standard deviation) was found to increase linearly with the ensemble mean. This finding is consistent with stochastic agent-based mathematical models of angiogenesis that represent angiogenic growth as a series of independent stochastic cell-level decisions

    Topography of Extracellular Matrix Mediates Vascular Morphogenesis and Migration Speeds in Angiogenesis

    Get PDF
    The extracellular matrix plays a critical role in orchestrating the events necessary for wound healing, muscle repair, morphogenesis, new blood vessel growth, and cancer invasion. In this study, we investigate the influence of extracellular matrix topography on the coordination of multi-cellular interactions in the context of angiogenesis. To do this, we validate our spatio-temporal mathematical model of angiogenesis against empirical data, and within this framework, we vary the density of the matrix fibers to simulate different tissue environments and to explore the possibility of manipulating the extracellular matrix to achieve pro- and anti-angiogenic effects. The model predicts specific ranges of matrix fiber densities that maximize sprout extension speed, induce branching, or interrupt normal angiogenesis, which are independently confirmed by experiment. We then explore matrix fiber alignment as a key factor contributing to peak sprout velocities and in mediating cell shape and orientation. We also quantify the effects of proteolytic matrix degradation by the tip cell on sprout velocity and demonstrate that degradation promotes sprout growth at high matrix densities, but has an inhibitory effect at lower densities. Our results are discussed in the context of ECM targeted pro- and anti-angiogenic therapies that can be tested empirically

    Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection

    Get PDF
    Ischemic tolerance defines transient resistance to lethal ischemia gained by a prior sublethal noxious stimulus (i.e., preconditioning). This adaptive response is thought to be an evolutionarily conserved defense mechanism, observed in a wide variety of species. Preconditioning confers ischemic tolerance if not in all, in most organ systems, including the heart, kidney, liver, and small intestine. Since the first landmark experimental demonstration of ischemic tolerance in the gerbil brain in early 1990's, basic scientific knowledge on the mechanisms of cerebral ischemic tolerance increased substantially. Various noxious stimuli can precondition the brain, presumably through a common mechanism, genomic reprogramming. Ischemic tolerance occurs in two temporally distinct windows. Early tolerance can be achieved within minutes, but wanes also rapidly, within hours. Delayed tolerance develops in hours and lasts for days. The main mechanism involved in early tolerance is adaptation of membrane receptors, whereas gene activation with subsequent de novo protein synthesis dominates delayed tolerance. Ischemic preconditioning is associated with robust cerebroprotection in animals. In humans, transient ischemic attacks may be the clinical correlate of preconditioning leading to ischemic tolerance. Mimicking the mechanisms of this unique endogenous protection process is therefore a potential strategy for stroke prevention. Perhaps new remedies for stroke are very close, right in our cells

    Impact of coronavirus disease 2019 (COVID-19) outbreak on acute admissions at the emergency and cardiology departments across Europe

    Get PDF
    PURPOSE: We evaluated whether the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) pandemic was associated with changes in the pattern of acute cardiovascular admissions across European centers.METHODS: We set-up a multicenter, multinational, pan-European observational registry in 15 centers from 12 countries. All consecutive acute admissions to emergency departments and cardiology departments throughout a 1-month period during the COVID-19 outbreak were compared with an equivalent 1-month period in 2019. The acute admissions to cardiology departments were classified into 5 major categories: acute coronary syndrome, acute heart failure, arrhythmia, pulmonary embolism, and other.RESULTS: Data from 54,331 patients were collected and analyzed. Nine centers provided data on acute admissions to emergency departments comprising 50,384 patients: 20,226 in 2020 compared with 30,158 in 2019 (incidence rate ratio [IRR] with 95% confidence interval [95%CI]: 0.66 [0.58-0.76]). The risk of death at the emergency departments was higher in 2020 compared to 2019 (odds ratio [OR] with 95% CI: 4.1 [3.0-5.8], P < 0.0001). All 15 centers provided data on acute cardiology departments admissions: 3007 patients in 2020 and 4452 in 2019; IRR (95% CI): 0.68 (0.64-0.71). In 2020, there were fewer admissions with IRR (95% CI): acute coronary syndrome: 0.68 (0.63-0.73); acute heart failure: 0.65 (0.58-0.74); arrhythmia: 0.66 (0.60-0.72); and other: 0.68(0.62-0.76). We found a relatively higher percentage of pulmonary embolism admissions in 2020: odds ratio (95% CI): 1.5 (1.1-2.1), P = 0.02. Among patients with acute coronary syndrome, there were fewer admissions with unstable angina: 0.79 (0.66-0.94); non-ST segment elevation myocardial infarction: 0.56 (0.50-0.64); and ST-segment elevation myocardial infarction: 0.78 (0.68-0.89).CONCLUSION: In the European centers during the COVID-19 outbreak, there were fewer acute cardiovascular admissions. Also, fewer patients were admitted to the emergency departments with 4 times higher death risk at the emergency departments. (C) 2020 Published by Elsevier Inc.Cardiolog

    Microfluidics: reframing biological enquiry

    Full text link
    The underlying physical properties of microfluidic tools have led to new biological insights through the development of microsystems that can manipulate, mimic and measure biology at a resolution that has not been possible with macroscale tools. Microsystems readily handle sub-microlitre volumes, precisely route predictable laminar fluid flows and match both perturbations and measurements to the length scales and timescales of biological systems. The advent of fabrication techniques that do not require highly specialized engineering facilities is fuelling the broad dissemination of microfluidic systems and their adaptation to specific biological questions. We describe how our understanding of molecular and cell biology is being and will continue to be advanced by precision microfluidic approaches and posit that microfluidic tools - in conjunction with advanced imaging, bioinformatics and molecular biology approaches - will transform biology into a precision science
    corecore