5 research outputs found

    Epidemiology of childhood and adolescent cancer in Bangladesh, 2001-2014

    Get PDF
    Background: Cancer burden among children and adolescents is largely unknown in Bangladesh. This study aims to provide a comprehensive overview on childhood and adolescent cancers and to contribute to the future strategies to deal with these diseases in Bangladesh. Methods: Data on malignant neoplasms in patients aged less than 20years diagnosed between 2001 and 2014 (N=3143) in Bangladesh was collected by the National Institute of Cancer Research and Hospital and ASHIC Foundation. The age pattern and distribution of cancer types were analysed and the incidence rates were calculated. Results: The age-standardised incidence rate was 7.8 per million person-years for children (0-14 years) in the last time period (2011-2014). Retinoblastoma (25%) and leukaemia (18%) were the most common childhood cancers. For adolescents (15-19 years), the age-specific incidence rate was 2.1 per million person-years in the same time period. Most common adolescent cancers were malignant bone tumours (38%), germ cell and gonadal tumours (17%), and epithelial tumours (16%). There were more boys affected (M: F ratio 2.0 in children and 1.4 in adolescents) than girls. Conclusion: Cancer incidences were lower than expected most likely due to a low level of awareness about cancer among clinicians and the population, inadequate access to health care, lack of diagnostic equipment and incomplete recording of cases. Improvements on different levels should be made to get a better epidemiologic insight and to detect cancer earlier resulting in a better outcome for affected chil

    Analysis of Interactions of Salmonella Type Three Secretion Mutants with 3-D Intestinal Epithelial Cells

    Get PDF
    The prevailing paradigm of Salmonella enteropathogenesis based on monolayers asserts that Salmonella pathogenicity island-1 Type Three Secretion System (SPI-1 T3SS) is required for bacterial invasion into intestinal epithelium. However, little is known about the role of SPI-1 in mediating gastrointestinal disease in humans. Recently, SPI-1 deficient nontyphoidal Salmonella strains were isolated from infected humans and animals, indicating that SPI-1 is not required to cause enteropathogenesis and demonstrating the need for more in vivo-like models. Here, we utilized a previously characterized 3-D organotypic model of human intestinal epithelium to elucidate the role of all characterized Salmonella enterica T3SSs. Similar to in vivo reports, the Salmonella SPI-1 T3SS was not required to invade 3-D intestinal cells. Additionally, Salmonella strains carrying single (SPI-1 or SPI-2), double (SPI-1/2) and complete T3SS knockout (SPI-1/SPI-2: flhDC) also invaded 3-D intestinal cells to wildtype levels. Invasion of wildtype and TTSS mutants was a Salmonella active process, whereas non-invasive bacterial strains, bacterial size beads, and heat-killed Salmonella did not invade 3-D cells. Wildtype and T3SS mutants did not preferentially target different cell types identified within the 3-D intestinal aggregates, including M-cells/M-like cells, enterocytes, or Paneth cells. Moreover, each T3SS was necessary for substantial intracellular bacterial replication within 3-D cells. Collectively, these results indicate that T3SSs are dispensable for Salmonella invasion into highly differentiated 3-D models of human intestinal epithelial cells, but are required for intracellular bacterial growth, paralleling in vivo infection observations and demonstrating the utility of these models in predicting in vivo-like pathogenic mechanisms

    New Insights into the Bacterial Fitness-Associated Mechanisms Revealed by the Characterization of Large Plasmids of an Avian Pathogenic E. coli

    Get PDF
    Extra-intestinal pathogenic E. coli (ExPEC), including avian pathogenic E. coli (APEC), pose a considerable threat to both human and animal health, with illness causing substantial economic loss. APEC strain χ7122 (O78∶K80∶H9), containing three large plasmids [pChi7122-1 (IncFIB/FIIA-FIC), pChi7122-2 (IncFII), and pChi7122-3 (IncI(2))]; and a small plasmid pChi7122-4 (ColE2-like), has been used for many years as a model strain to study the molecular mechanisms of ExPEC pathogenicity and zoonotic potential. We previously sequenced and characterized the plasmid pChi7122-1 and determined its importance in systemic APEC infection; however the roles of the other pChi7122 plasmids were still ambiguous. Herein we present the sequence of the remaining pChi7122 plasmids, confirming that pChi7122-2 and pChi7122-3 encode an ABC iron transport system (eitABCD) and a putative type IV fimbriae respectively, whereas pChi7122-4 is a cryptic plasmid. New features were also identified, including a gene cluster on pChi7122-2 that is not present in other E. coli strains but is found in Salmonella serovars and is predicted to encode the sugars catabolic pathways. In vitro evaluation of the APEC χ7122 derivative strains with the three large plasmids, either individually or in combinations, provided new insights into the role of plasmids in biofilm formation, bile and acid tolerance, and the interaction of E. coli strains with 3-D cultures of intestinal epithelial cells. In this study, we show that the nature and combinations of plasmids, as well as the background of the host strains, have an effect on these phenomena. Our data reveal new insights into the role of extra-chromosomal sequences in fitness and diversity of ExPEC in their phenotypes
    corecore