157 research outputs found

    On Virtual Displacement and Virtual Work in Lagrangian Dynamics

    Full text link
    The confusion and ambiguity encountered by students, in understanding virtual displacement and virtual work, is discussed in this article. A definition of virtual displacement is presented that allows one to express them explicitly for holonomic (velocity independent), non-holonomic (velocity dependent), scleronomous (time independent) and rheonomous (time dependent) constraints. It is observed that for holonomic, scleronomous constraints, the virtual displacements are the displacements allowed by the constraints. However, this is not so for a general class of constraints. For simple physical systems, it is shown that, the work done by the constraint forces on virtual displacements is zero. This motivates Lagrange's extension of d'Alembert's principle to system of particles in constrained motion. However a similar zero work principle does not hold for the allowed displacements. It is also demonstrated that d'Alembert's principle of zero virtual work is necessary for the solvability of a constrained mechanical problem. We identify this special class of constraints, physically realized and solvable, as {\it the ideal constraints}. The concept of virtual displacement and the principle of zero virtual work by constraint forces are central to both Lagrange's method of undetermined multipliers, and Lagrange's equations in generalized coordinates.Comment: 12 pages, 10 figures. This article is based on an earlier article physics/0410123. It includes new figures, equations and logical conten

    Assessing copy number abnormalities and copy-neutral loss-of-heterozygosity across the genome as best practice in diagnostic evaluation of acute myeloid leukemia: An evidence-based review from the cancer genomics consortium (CGC) myeloid neoplasms working group

    Get PDF
    Structural genomic abnormalities, including balanced chromosomal rearrangements, copy number gains and losses and copy-neutral loss-of-heterozygosity (CN-LOH) represent an important category of diagnostic, prognostic and therapeutic markers in acute myeloid leukemia (AML). Genome-wide evaluation for copy number abnormalities (CNAs) is at present performed by karyotype analysis which has low resolution and is unobtainable in a subset of cases. Furthermore, examination for possible CN-LOH in leukemia cells is at present not routinely performed in the clinical setting. Chromosomal microarray (CMA) analysis is a widely available assay for CNAs and CN-LOH in diagnostic laboratories, but there are currently no guidelines how to best incorporate this technology into clinical testing algorithms for neoplastic diseases including AML. The Cancer Genomics Consortium Working Group for Myeloid Neoplasms performed an extensive review of peer-reviewed publications focused on CMA analysis in AML. Here we summarize evidence regarding clinical utility of CMA analysis in AML extracted from published data, and provide recommendations for optimal utilization of CMA testing in the diagnostic workup. In addition, we provide a list of CNAs and CN-LOH regions which have documented clinical significance in diagnosis, prognosis and treatment decisions in AML

    Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes

    Get PDF
    TP53 mutations are associated with adverse outcomes and shorter response to hypomethylating agents (HMAs) in myelodysplastic syndrome (MDS). Limited data have evaluated the impact of the type, number, and patterns of TP53 mutations in response outcomes and prognosis of MDS. We evaluated the clinicopathologic characteristics, outcomes, and response to therapy of 261 patients with MDS and TP53 mutations. Median age was 68 years (range, 18-80 years). A total of 217 patients (83%) had a complex karyotype. TP53 mutations were detected at a median variant allele frequency (VAF) of 0.39 (range, 0.01-0.94). TP53 deletion was associated with lower overall response rate (ORR) (odds ratio, 0.3; P = .021), and lower TP53 VAF correlated with higher ORR to HMAs. Increase in TP53 VAF at the time of transformation was observed in 13 patients (61%), and previously undetectable mutations were observed in 15 patients (65%). TP53 VAF was associated with worse prognosis (hazard ratio, 1.02 per 1% VAF increase; 95% confidence interval, 1.01-1.03; P \u3c .001). Integration of TP53 VAF and karyotypic complexity identified prognostic subgroups within TP53-mutant MDS. We developed a multivariable model for overall survival that included the revised International Prognostic Scoring System (IPSS-R) categories and TP53 VAF. Total score for each patient was calculated as follows: VAF TP53 + 13 Ă— IPSS-R blast score + 16 Ă— IPSS-R cytogenetic score + 28 Ă— IPSS-R hemoglobin score + 46 Ă— IPSS-R platelet score. Use of this model identified 4 prognostic subgroups with median survival times of not reached, 42.2, 21.9, and 9.2 months. These data suggest that outcomes of patients with TP53-mutated MDS are heterogeneous and that transformation may be driven not only by TP53 but also by other factors

    A Phase 1/2 Study of Azacitidine, Venetoclax and Pevonedistat in Newly Diagnosed Secondary AML and in MDS or CMMLAfter Failure of Hypomethylating Agents

    Get PDF
    BACKGROUND: Pevonedistat is a first-in-class, small molecular inhibitor of NEDD8-activating enzyme that has clinical activity in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). Preclinical data suggest synergy of pevonedistat with azacitidine and venetoclax. METHODS: This single-center, phase 1/2 study evaluated the combination of azacitidine, venetoclax and pevonedistat in older adults with newly diagnosed secondary AML or with MDS or chronic myelomonocytic leukemia (CMML) after failure of hypomethylating agents. Patients received azacitidine 75 mg/m FINDINGS: Forty patients were enrolled (32 with AML and 8 with MDS/CMML). In the AML cohort, the median age was 74 years (range 61-86 years), and 27 patients (84%) had at least one adverse risk cyto-molecular feature, including 15 (47%) with a TP53 mutation or MECOM rearrangement; seventeen patients (53%) had received prior therapy for a preceding myeloid disorder. The CR/CRi rate was 66% (CR 50%; CRi 16%), and the median overall survival (OS) was 8.1 months. In the MDS/CMML cohort, 7 patients (87%) were high or very high risk by the IPSS-R. The overall response rate was 75% (CR 13%; mCR with or without HI 50%; HI 13%). The most common grade 3-4 adverse events were infection in 16 patients (35%), febrile neutropenia in 10 patients (25%) and hypophosphatemia in 9 patients (23%). In an exploratory analysis, early upregulation of NOXA expression was observed, with subsequent decrease in MCL-1 and FLIP, findings consistent with preclinical mechanistic studies of pevonedistat. Upregulation of CD36 was observed, which may have contributed to therapeutic resistance. CONCLUSIONS: The triplet combination of azacitidine, venetoclax and pevonedistat shows encouraging activity in this very poor-risk population of patients with AML, MDS or CMML. Trial registration ClinicalTrials.gov (NCT03862157)

    A Phase 1/2 Study of Azacitidine, Venetoclax and Pevonedistat in Newly Diagnosed Secondary AML and in MDS or CMML After Failure of Hypomethylating Agents

    Get PDF
    BACKGROUND: Pevonedistat is a first-in-class, small molecular inhibitor of NEDD8-activating enzyme that has clinical activity in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). Preclinical data suggest synergy of pevonedistat with azacitidine and venetoclax. METHODS: This single-center, phase 1/2 study evaluated the combination of azacitidine, venetoclax and pevonedistat in older adults with newly diagnosed secondary AML or with MDS or chronic myelomonocytic leukemia (CMML) after failure of hypomethylating agents. Patients received azacitidine 75 mg/m FINDINGS: Forty patients were enrolled (32 with AML and 8 with MDS/CMML). In the AML cohort, the median age was 74 years (range 61-86 years), and 27 patients (84%) had at least one adverse risk cyto-molecular feature, including 15 (47%) with a TP53 mutation or MECOM rearrangement; seventeen patients (53%) had received prior therapy for a preceding myeloid disorder. The CR/CRi rate was 66% (CR 50%; CRi 16%), and the median overall survival (OS) was 8.1 months. In the MDS/CMML cohort, 7 patients (87%) were high or very high risk by the IPSS-R. The overall response rate was 75% (CR 13%; mCR with or without HI 50%; HI 13%). The most common grade 3-4 adverse events were infection in 16 patients (35%), febrile neutropenia in 10 patients (25%) and hypophosphatemia in 9 patients (23%). In an exploratory analysis, early upregulation of NOXA expression was observed, with subsequent decrease in MCL-1 and FLIP, findings consistent with preclinical mechanistic studies of pevonedistat. Upregulation of CD36 was observed, which may have contributed to therapeutic resistance. CONCLUSIONS: The triplet combination of azacitidine, venetoclax and pevonedistat shows encouraging activity in this very poor-risk population of patients with AML, MDS or CMML. Trial registration ClinicalTrials.gov (NCT03862157)

    Lenalidomide Promotes the Development of TP53-Mutated Therapy-Related Myeloid Neoplasms

    Get PDF
    There is a growing body of evidence that therapy-related myeloid neoplasms (t-MNs) with driver gene mutations arise in the background of clonal hematopoiesis (CH) under the positive selective pressure of chemo- and radiation therapies. Uncovering the exposure relationships that provide selective advantage to specific CH mutations is critical to understanding the pathogenesis and etiology of t-MNs. In a systematic analysis of 416 patients with t-MN and detailed prior exposure history, we found that TP53 mutations were significantly associated with prior treatment with thalidomide analogs, specifically lenalidomide. We demonstrated experimentally that lenalidomide treatment provides a selective advantage to Trp53-mutant hematopoietic stem and progenitor cells (HSPCs) in vitro and in vivo, the effect of which was specific to Trp53-mutant HSPCs and was not observed in HSPCs with other CH mutations. Because of the differences in CK1α degradation, pomalidomide treatment did not provide an equivalent level of selective advantage to Trp53-mutant HSPCs, providing a biological rationale for its use in patients at high risk for t-MN. These findings highlight the role of lenalidomide treatment in promoting TP53-mutated t-MNs and offer a potential alternative strategy to mitigate the risk of t-MN development

    Geographical migration and fitness dynamics of Streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae is a leading cause of pneumonia and meningitis worldwide. Many different serotypes co-circulate endemically in any one location1,2. The extent and mechanisms of spread and vaccine-driven changes in fitness and antimicrobial resistance remain largely unquantified. Here using geolocated genome sequences from South Africa (n = 6,910, collected from 2000 to 2014), we developed models to reconstruct spread, pairing detailed human mobility data and genomic data. Separately, we estimated the population-level changes in fitness of strains that are included (vaccine type (VT)) and not included (non-vaccine type (NVT)) in pneumococcal conjugate vaccines, first implemented in South Africa in 2009. Differences in strain fitness between those that are and are not resistant to penicillin were also evaluated. We found that pneumococci only become homogenously mixed across South Africa after 50 years of transmission, with the slow spread driven by the focal nature of human mobility. Furthermore, in the years following vaccine implementation, the relative fitness of NVT compared with VT strains increased (relative risk of 1.68; 95% confidence interval of 1.59–1.77), with an increasing proportion of these NVT strains becoming resistant to penicillin. Our findings point to highly entrenched, slow transmission and indicate that initial vaccine-linked decreases in antimicrobial resistance may be transient

    Stem cell architecture drives myelodysplastic syndrome progression and predicts response to venetoclax-based therapy

    Get PDF
    Myelodysplastic syndromes (MDS) are heterogeneous neoplastic disorders of hematopoietic stem cells (HSCs). The current standard of care for patients with MDS is hypomethylating agent (HMA)-based therapy; however, almost 50% of MDS patients fail HMA therapy and progress to acute myeloid leukemia, facing a dismal prognosis due to lack of approved second-line treatment options. As cancer stem cells are the seeds of disease progression, we investigated the biological properties of the MDS HSCs that drive disease evolution, seeking to uncover vulnerabilities that could be therapeutically exploited. Through integrative molecular profiling of HSCs and progenitor cells in large patient cohorts, we found that MDS HSCs in two distinct differentiation states are maintained throughout the clinical course of the disease, and expand at progression, depending on recurrent activation of the anti-apoptotic regulator BCL-2 or nuclear factor-kappa B-mediated survival pathways. Pharmacologically inhibiting these pathways depleted MDS HSCs and reduced tumor burden in experimental systems. Further, patients with MDS who progressed after failure to frontline HMA therapy and whose HSCs upregulated BCL-2 achieved improved clinical responses to venetoclax-based therapy in the clinical setting. Overall, our study uncovers that HSC architectures in MDS are potential predictive biomarkers to guide second-line treatments after HMA failure. These findings warrant further investigation of HSC-specific survival pathways to identify new therapeutic targets of clinical potential in MDS
    • …
    corecore