7 research outputs found

    Photoluminescent porous silicon nanowires as contrast agents for bioimaging

    Get PDF
    Porous silicon nanowires (pSi NWs) have attracted considerable interest due to their unique structural, optical properties and biocompatibility. The most common method for their top-down synthesis is metal-assisted chemical etching (MACE) of crystalline silicon (c-Si) wafers using silver nanoparticles as a catalyst. However, the replacement of silver with bioinert gold nanoparticles (Au NPs) markedly improves the efficiency of pSi NWs in biomedical applications. The present study demonstrates the fabrication of porous pSi NWs arrays using Au NPs as the catalyst in MACE of c-Si wafers with a resistivity of 1–5 mOhm·cm. Using scanning electron microscopy (SEM), the formation of arrays of porous nanowires with a diameter of 50 nm that consist of small silicon nanocrystals (nc-Si) and pores was observed. Raman spectroscopy analysis determined the size of nc-Si is about 4 nm. The pSi NWs exhibit effective photoluminescence (PL) with a peak in the red spectrum, which is attributed to the quantum confinement effect occurred in small 4 nm nc-Si. In addition, the pSi NWs exhibit low toxicity towards MCF-7 cancer cells, and their PL characteristics allow them to be used as contrast agents for bioimagin

    Influence of nanosized incoherent particles on dislocation annihilation in heterophase aluminum-matrix crystalline alloys

    No full text
    Using mathematical modeling, patterns of changing the densities of dislocation subsystem components in dispersion hardened materials have been revealed depending on the volume fraction and scale characteristics of the hardening phase at different deformation temperatures. It has been shown that in all examined materials with hardening particles of different sizes, the dislocation annihilation significantly decreases with the volume fraction of nanosized incoherent particles. It has been found that the dislocation density in prismatic loops is largely determined by the particle sizes and the volume fraction of the hardening phase

    Doping nature of group V elements in ZnO single crystals grown from melts at high pressure

    No full text
    International audienceZnO single crystals doped with group-V elements have been grown from melt at high pressure. Dopants were introduced in several forms such as Sb2O3, P, As, Sb and Zn3X2 (X = P, As, Sb) in the high-pressure cell. Systematic studies of morphology were performed using optical microscopy and scanning electron microscopy. Crystal structure and lattice parameters were studied using X-ray diffraction and X-ray crystallography. Crystals exhibited distinct changes of size, shape and color compared to undoped ZnO melt-grown single crystals due to the dopants influence. X-ray photoelectron spectroscopy was used to determine valence states of group-V elements when incorporated in ZnO lattice. Photoluminescence, Raman spectroscopy and electron paramagnetic resonance spectroscopy were employed to investigate the nature of defects formed as the result of doping. Formation of VZn and VZn-complexes was confirmed and their concentrations were measured. Estimates of the number of VZn per one dopant atom showed that the ratio is noticeably higher than the one suggested for the shallow complex As(P, Sb)Zn-2VZn commonly regarded as responsible for acceptor properties in ZnO

    Doping nature of group V elements in ZnO single crystals grown from melts at high pressure

    No full text
    ZnO single crystals doped with group-V elements have been grown from melt at high pressure. Dopants were introduced in several forms such as Sb2O3, P, As, Sb and Zn3X2 (X = P, As, Sb) in the high-pressure cell. Systematic studies of morphology were performed using optical microscopy and scanning electron microscopy. Crystal structure and lattice parameters were studied using X-ray diffraction and X-ray crystallography. Crystals exhibited distinct changes of size, shape and color compared to undoped ZnO melt-grown single crystals due to the dopants influence. X-ray photoelectron spectroscopy was used to determine valence states of group-V elements when incorporated in ZnO lattice. Photoluminescence, Raman spectroscopy and electron paramagnetic resonance spectroscopy were employed to investigate the nature of defects formed as the result of doping. Formation of VZn and VZn-complexes was confirmed and their concentrations were measured. Estimates of the number of VZn per one dopant atom showed that the ratio is noticeably higher than the one suggested for the shallow complex As(P, Sb)Zn-2VZn commonly regarded as responsible for acceptor properties in ZnO

    Optical Monitoring of the Biodegradation of Porous and Solid Silicon Nanoparticles

    No full text
    Silicon nanoparticles (SiNP) are currently of great interest, especially in biomedicine, because of their unique physicochemical properties combined with biodegradability. SiNPs can be obtained in various ways and can have either a non-porous solid (sol-) or porous (por-) structure. In this work, we carry out detailed optical monitoring of sol- and por-SiNP biodegradation using Raman and photoluminescence (PL) micro-spectroscopy. SiNPs were obtained by ultrasound grinding of sol- or por-silicon nanowires, created by silver-assisted chemical etching of crystalline Si with different doping levels. In this case, sol-SiNPs consist of nanocrystals 30 nm in size, while por-SiNPs consist of small 3 nm nanocrystals and 16 nm pores. Both SiNPs show low in vitro cytotoxicity towards MCF-7 and HEK293T cells up to 800 μg/mL. The appearance of the F-band (blue–yellow) PL, as well as a decrease in the intensity of the Raman signal, indicate the gradual dissolution of the sol-SiNPs during 20 days of incubation. At the same time, the rapid dissolution of por-SiNP within 24 h is identified by the quenching of their S-band (red) PL and the disappearance of the Raman signal. The obtained results are important for development of intelligent biodegradable drug delivery systems based on SiNPs
    corecore