11 research outputs found

    Current status in spatiotemporal analysis of contrast‐based perfusion MRI

    Get PDF
    In perfusion MRI, image voxels form a spatially organized network of systems, all exchanging indicator with their immediate neighbors. Yet the current paradigm for perfusion MRI analysis treats all voxels or regions-of-interest as isolated systems supplied by a single global source. This simplification not only leads to long-recognized systematic errors but also fails to leverage the embedded spatial structure within the data. Since the early 2000s, a variety of models and implementations have been proposed to analyze systems with between-voxel interactions. In general, this leads to large and connected numerical inverse problems that are intractible with conventional computational methods. With recent advances in machine learning, however, these approaches are becoming practically feasible, opening up the way for a paradigm shift in the approach to perfusion MRI. This paper seeks to review the work in spatiotemporal modelling of perfusion MRI using a coherent, harmonized nomenclature and notation, with clear physical definitions and assumptions. The aim is to introduce clarity in the state-of-the-art of this promising new approach to perfusion MRI, and help to identify gaps of knowledge and priorities for future research

    Identifiability of spatiotemporal tissue perfusion models

    Get PDF
    Objective. Standard models for perfusion quantification in DCE-MRI produce a bias by treating voxels as isolated systems. Spatiotemporal models can remove this bias, but it is unknown whether they are fundamentally identifiable. The aim of this study is to investigate this question in silico using one-dimensional toy systems with a one-compartment blood flow model and a two-compartment perfusion model. Approach. For each of the two models, identifiability is explored theoretically and in-silico for three systems. Concentrations over space and time are simulated by forward propagation. Different levels of noise and temporal undersampling are added to investigate sensitivity to measurement error. Model parameters are fitted using a standard gradient descent algorithm, applied iteratively with a stepwise increasing time window. Model fitting is repeated with different initial values to probe uniqueness of the solution. Reconstruction accuracy is quantified for each parameter by comparison to the ground truth. Main results. Theoretical analysis shows that flows and volume fractions are only identifiable up to a constant, and that this degeneracy can be removed by proper choice of parameters. Simulations show that in all cases, the tissue concentrations can be reconstructed accurately. The one-compartment model shows accurate reconstruction of blood velocities and arterial input functions, independent of the initial values and robust to measurement error. The two-compartmental perfusion model was not fully identifiable, showing good reconstruction of arterial velocities and input functions, but multiple valid solutions for the perfusion parameters and venous velocities, and a strong sensitivity to measurement error in these parameters. Significance. These results support the use of one-compartment spatiotemporal flow models, but two-compartment perfusion models were not sufficiently identifiable. Future studies should investigate whether this degeneracy is resolved in more realistic 2D and 3D systems, by adding physically justified constraints, or by optimizing experimental parameters such as injection duration or temporal resolution

    On the consistency of Vision-aided Inertial Navigation

    No full text
    Abstract In this paper, we study estimator inconsistency in Vision-aided Inertial Navigation Systems (VINS). We show that standard (linearized) estimation approaches, such as the Extended Kalman Filter (EKF), can fundamentally alter the system observability properties, in terms of the number and structure of the unobservable directions. This in turn allows the influx of spurious information, leading to inconsistency. To address this issue, we propose an Observability-Constrained VINS (OC-VINS) methodology that explicitly adheres to the observability properties of the true system. We apply our approach to the Multi-State Constraint Kalman Filter (MSC-KF), and provide both simulation and experimental validation of the effectiveness of our method for improving estimator consistency.

    Towards Consistent Vision-aided Inertial Navigation

    No full text
    Abstract In this paper, we study estimator inconsistency in Vision-aided Inertial Navigation Systems (VINS) from a standpoint of system observability. We postulate that a leading cause of inconsistency is the gain of spurious information along unobservable directions, resulting in smaller uncertainties, larger estimation errors, and possibly even divergence. We develop an Observability-Constrained VINS (OC-VINS), which explicitly enforces the unobservable directions of the system, hence preventing spurious information gain and reducing inconsistency. Our analysis, along with the proposed method for reducing inconsistency, are extensively validated with simulation trials and real-world experiments.

    The ISMRM Open Science Initiative for Perfusion Imaging (OSIPI): Results from the OSIPI–Dynamic Contrast-Enhanced challenge

    No full text
    Purpose: K trans has often been proposed as a quantitative imaging biomarker for diagnosis,prognosis,andtreatmentresponseassessmentforvarioustumors.Noneofthe many software tools for K trans quantification are standardized. The ISMRM OpenScience Initiative for Perfusion Imaging–Dynamic Contrast-Enhanced (OSIPI-DCE)challenge was designed to benchmark methods to better help the efforts to standardize K trans measurement. Methods: A framework was created to evaluate K trans values produced by DCE-MRI analysis pipelines to enable benchmarking. The perfusion MRI community was invited to apply their pipelines for K trans quantification in glioblastoma from clinical and synthetic patients. Submissions were required to include the entrants’ K trans values, the applied software, and a standard operating procedure. These were evaluated using the proposed OSIPIgold score defined with accuracy, repeatability, and reproducibility components. Results: Across the 10 received submissions, the OSIPIgold score ranged from28% to 78% with a 59% median. The accuracy, repeatability, and reproducibility scores ranged from 0.54 to 0.92, 0.64 to 0.86, and 0.65 to 1.00, respectively(0–1=lowest–highest). Manual arterial input function selection markedly affected the reproducibility and showed greater variability in K trans analysis than automated methods. Furthermore, provision of a detailed standard operating procedure was critical for higher reproducibility. Conclusions: This study reports results from the OSIPI-DCE challenge and high-lights the high inter-software variability within K trans estimation, providing a framework for ongoing benchmarking against the scores presented. Through this challenge, the participating teams were ranked based on the performance of their software tools in the particular setting of this challenge. In a real-world clinical setting, many of these tools may perform differently with different benchmarking methodology

    Previous fracture and subsequent fracture risk: a meta-analysis to update FRAX

    No full text
    Summary A large international meta-analysis using primary data from 64 cohorts has quantified the increased risk of fracture associated with a previous history of fracture for future use in FRAX. Introduction The aim of this study was to quantify the fracture risk associated with a prior fracture on an international basis and to explore the relationship of this risk with age, sex, time since baseline and bone mineral density (BMD). Methods We studied 665,971 men and 1,438,535 women from 64 cohorts in 32 countries followed for a total of 19.5 million person-years. The effect of a prior history of fracture on the risk of any clinical fracture, any osteoporotic fracture, major osteoporotic fracture, and hip fracture alone was examined using an extended Poisson model in each cohort. Covariates examined were age, sex, BMD, and duration of follow-up. The results of the different studies were merged by using the weighted β-coefficients. Results A previous fracture history, compared with individuals without a prior fracture, was associated with a significantly increased risk of any clinical fracture (hazard ratio, HR = 1.88; 95% CI = 1.72–2.07). The risk ratio was similar for the outcome of osteoporotic fracture (HR = 1.87; 95% CI = 1.69–2.07), major osteoporotic fracture (HR = 1.83; 95% CI = 1.63–2.06), or for hip fracture (HR = 1.82; 95% CI = 1.62–2.06). There was no significant difference in risk ratio between men and women. Subsequent fracture risk was marginally downward adjusted when account was taken of BMD. Low BMD explained a minority of the risk for any clinical fracture (14%), osteoporotic fracture (17%), and for hip fracture (33%). The risk ratio for all fracture outcomes related to prior fracture decreased significantly with adjustment for age and time since baseline examination. Conclusion A previous history of fracture confers an increased risk of fracture of substantial importance beyond that explained by BMD. The effect is similar in men and women. Its quantitation on an international basis permits the more accurate use of this risk factor in case finding strategies

    Update of the fracture risk prediction tool FRAX: A systematic review of potential cohorts and analysis plan

    No full text
    Summary: We describe the collection of cohorts together with the analysis plan for an update of the fracture risk prediction tool FRAX with respect to current and novel risk factors. The resource comprises 2,138,428 participants with a follow-up of approximately 20 million person-years and 116,117 documented incident major osteoporotic fractures. Introduction: The availability of the fracture risk assessment tool FRAX® has substantially enhanced the targeting of treatment to those at high risk of fracture with FRAX now incorporated into more than 100 clinical osteoporosis guidelines worldwide. The aim of this study is to determine whether the current algorithms can be further optimised with respect to current and novel risk factors. Methods: A computerised literature search was performed in PubMed from inception until May 17, 2019, to identify eligible cohorts for updating the FRAX coefficients. Additionally, we searched the abstracts of conference proceedings of the American Society for Bone and Mineral Research, European Calcified Tissue Society and World Congress of Osteoporosis. Prospective cohort studies with data on baseline clinical risk factors and incident fractures were eligible. Results: Of the 836 records retrieved, 53 were selected for full-text assessment after screening on title and abstract. Twelve cohorts were deemed eligible and of these, 4 novel cohorts were identified. These cohorts, together with 60 previously identified cohorts, will provide the resource for constructing an updated version of FRAX comprising 2,138,428 participants with a follow-up of approximately 20 million person-years and 116,117 documented incident major osteoporotic fractures. For each known and candidate risk factor, multivariate hazard functions for hip fracture, major osteoporotic fracture and death will be tested using extended Poisson regression. Sex- and/or ethnicity-specific differences in the weights of the risk factors will be investigated. After meta-analyses of the cohort-specific beta coefficients for each risk factor, models comprising 10-year probability of hip and major osteoporotic fracture, with or without femoral neck bone mineral density, will be computed. Conclusions: These assembled cohorts and described models will provide the framework for an updated FRAX tool enabling enhanced assessment of fracture risk (PROSPERO (CRD42021227266)).</p

    Partners in Crime: NGF and BDNF in Visceral Dysfunction

    No full text
    corecore