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Abstract

Objective. Standard models for perfusion quantification in DCE-MRI produce a bias by treating voxels
asisolated systems. Spatiotemporal models can remove this bias, but it is unknown whether they are
fundamentally identifiable. The aim of this study is to investigate this question in silico using one-
dimensional toy systems with a one-compartment blood flow model and a two-compartment
perfusion model. Approach. For each of the two models, identifiability is explored theoretically and in-
silico for three systems. Concentrations over space and time are simulated by forward propagation.
Different levels of noise and temporal undersampling are added to investigate sensitivity to
measurement error. Model parameters are fitted using a standard gradient descent algorithm, applied
iteratively with a stepwise increasing time window. Model fitting is repeated with different initial
values to probe uniqueness of the solution. Reconstruction accuracy is quantified for each parameter
by comparison to the ground truth. Main results. Theoretical analysis shows that flows and volume
fractions are only identifiable up to a constant, and that this degeneracy can be removed by proper
choice of parameters. Simulations show that in all cases, the tissue concentrations can be reconstructed
accurately. The one-compartment model shows accurate reconstruction of blood velocities and
arterial input functions, independent of the initial values and robust to measurement error. The two-
compartmental perfusion model was not fully identifiable, showing good reconstruction of arterial
velocities and input functions, but multiple valid solutions for the perfusion parameters and venous
velocities, and a strong sensitivity to measurement error in these parameters. Significance. These
results support the use of one-compartment spatiotemporal flow models, but two-compartment
perfusion models were not sufficiently identifiable. Future studies should investigate whether this
degeneracy is resolved in more realistic 2D and 3D systems, by adding physically justified constraints,
or by optimizing experimental parameters such as injection duration or temporal resolution.

1. Introduction

Conventional pharmacokinetic (PK) modeling of perfusion imaging typically quantifies tracer transport
parameters using an isolated single-voxel approach. Although these methods are highly scalable and
computationally efficient, they suffer from the fundamental assumption that each voxel acts as an isolated
system with a known global inlet concentration—the arterial input function or AIF. This approximation leads to
significant model errors which increase with spatial resolution (Buckley 2002, Calamante 2013, Willats and
Calamante 2013, Hanson et al 2018).

In theory, this bias can be removed by the use of spatiotemporal PK models (Sourbron 2014).
Implementations of this approach have mainly focused on one-compartment models with transport by
diffusion (Koh 2013), convection (Zhou et al 2021, Zhang et al 2023), or both (Sourbron 2015, Elkin et al 2019,
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Zhang et al 2022). Hybrid approaches have also been proposed, coupling a one-compartment spatiotemporal
model for interstitial transport with vascular delivery modeled by a single, global AIF (Pellerin et al 2007,
Fluckiger et al 2013, Sinno et al 2021, Sainz-DeMena et al 2022, Sinno et al 2022). Experience with fully
spatiotemporal two-compartment systems is extremely limited (Naevdal et al 2016).

All the above implementations apply additional constraints on the reconstructed model parameters (Shalom
etal 2023, 2024a, 2024b), for instance an assumption that diffusion is constant in space (Pellerin et al 2007), that
the diffusion gradient between adjacent voxels is negligible (Fluckiger et al 2013), that parameter fields have
small spatial gradients (Liu et al 2021, Zhou et al 2021, Zhang et al 2022, 2023), that transport is only radial in a
lesion (Sinno etal 2021, 2022), that perfusion is modeled by Darcy flow (Naevdal et al 2016), or that parameter
fields are in a known relationship to each other (Naevdal et al 2016). Constraints of this type are included to
reduce the computational complexity, but it is not always clear that they are physically justified, creating a risk of
new biases. For instance, it has been suggested that Darcy flow (Whitaker 1986) cannot capture the complete
physiology of the capillary bed without further modification (Peyrounette et al 2018).

Previous studies did not investigate whether such additional constraints, and the biases they produce, are
actually necessary. A simple parameter-counting exercise suggest they might not be: a 3D spatiotemporal model
is massively overdetermined, with the data points vastly outnumbering the unknowns. The aim of this study,
therefore, was to investigate whether unconstrained spatiotemporal PK models are fundamentally identifiable.
The study addresses the question in 1D toy models for intravascular tracer where solutions can be generated
efficiently with simple optimization routines.

2. Methodology

The question of identifiability is investigated for two nested models of increasing complexity: a one-
compartment convective blood flow model, and a two-compartment perfusion model with convective blood
transport (Sourbron 2014). The perfusion model was selected as it presents challenging conditions for model
fitting due to the relative similarity between the two compartments (arterial and venous).

2.1. Theory
2.1.1. One-compartment blood flow model
The one compartment blood flow model is defined by the transport equation

wm%@oz—ﬁf@man (1)

Here 0 < v < 1 (dimensionless) is the blood volume fraction, and ]? in units of mL/s/cm? is the flow of blood
(ml/s) through a unit tissue area (cm?®). The local tissue concentration ¢ (mmol/ml) measures the amount of
contrast agent (mmol) per mL of blood, and is not directly measurable. Rather, what is measured in MRI is the
tissue concentration C (mmol/ml), or the amount of contrast agent per mL of tissue:

CE, t) =v(@)c(, t). (2)
We will assume throughout that blood and tissue are incompressible, so that ]? is divergence free:
Vi@ =o. 3)

This model therefore has 3 free parameters per interior voxel, with 4 scalar fields (v, ]?), and one degree of
freedom removed by the flow incompressibility. Expressing the transport equation in terms of the tissue
concentration shows this more explicitly:

C o
& - _V.ic 4
y i 4

Here we introduced the blood velocity i = f / v, which represents 3 degrees of freedom and is not divergence-
free unless the blood volume fraction v is constant.

Without further constraints, the solution for (v, j? ) can only be determined up to a constant: if (v, f ) solve
the transport equations, then (av, ozj? ) are solutions too, for any constant «.. Therefore an additional constraint
is needed to pin down the values unambiguously, for instance by assuming the volume fraction in one particular
reference location is known. One approach could be to ensure that the spatial resolution is sufficiently high so
that some voxels can be found which lie entirely inside a venous vessel. If these voxels are at location X, we can
safely assume that v (X,) = 1. Alternatively, if the velocity ii provides sufficient information for the particular
application, and volumes or blood flows are not required, the model can be solved in the tissue concentration
picture directly (equation (4)).
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2.1.2. Two-compartment perfusion model

The two-compartment perfusion model involves an arterial (a) and venous (v) blood compartment, with mono-
directional exchange from a to v by a perfusion field F (X). Dropping coordinates from the definitions from here
on for simplicity, the system is defined by:

oc? o

0 — _V.f% — Fc 5
Vat fre ‘ ©)
8CV = 2y

'— = -V -f ¢+ Fc, 6
Vat fre ‘ ©

where superscript indicates compartmental transport coefficients, concentrations, and volume fractions. The
total volume fraction in these systems is constrained as 0 < v 4+ v” < 1. Since the total blood flow is
incompressible, we now have:

V-f"+fH=o. @)

Incompressibility of blood flow therefore requires the total inflow to equal the total outflow across both the
arterial and venous compartments. For the arterial compartment this yields an outflow characterized by the
perfusion field (F) which provides a venous inflow, derived in Sourbron (2014) as:

- 8Vﬁ-f”d2r:[/VFd3r. 8)

Application of the divergence theorem converts this closed surface integral and when apphed to a small volume
this produces alocal relation for the perfusion field (F) in terms of the arterial flow ( f ):

F=-V-f" ©)

The model has 7 free parameters per interior voxel: 8 scalar fields (v*, ]?a; VY, ]?V), with one degree of freedom
again removed via the flow incompressibility. The measurable quantity is the total tissue concentration:

C =v%* 4+ v'c". (10)

The transport equations can be written in terms of the tissue concentrations C* = v“c“and C" = v"c" by

defining arterial- and venous blood velocities #* = ]? ¢ / viand i’ = f ! / v¥ and the perfusion rate constant
K" =F/v*

38(3 = —V - ii%Cs — K¥Ca (11)
t
aact = —V - @"CY + K"C". (12)

This representation expresses the models directly in terms of 7 unconstrained scalar fields. As for the one-

. . za =2V
compartment case, the volumes and flows are only determined up to a constant: if (v*, f ) and (v*, f ) solve the
equations, then (av?, af “Yand (a", af ") are solutions too, for any constant . As before, the solution can be
pinned down by adding a constraint such as v* (Xy) = 1 for some suitably chosen location X in a large venous
vessel.

2.2. Discrete one-dimensions systems

Since the delivery of nutrients to tissue is a function of blood flow rather than blood velocity, clinical utility most
likely hinges on the ability to measure flow. Hence we will simulate all systems using the (v, ]? ) representation. In
order to apply the spatiotemporal compartment models to a system of N voxels measured at K time points, an
upwind discretisation is applied in space and first-order discretisation in time. The result is illustrated in figure 1.

2.2.1. One-compartment blood flow model
After discretisation, the one-compartment spatiotemporal model reduces to an N-compartment temporal
model Sourbron (2014):

ci(t + At) = ¢;i(t) + E{ki,zqczq(t) + kiiricip1(t) — kici(t)}, (13)

Vi

where At denotes the time step, and quantities ¢i(¢) and v; defined at the voxel center. The rate constants k;; from j
to iare positive and defined by:
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Figure 1. [llustration of the discretized compartment models. (A) A one-compartment blood flow model, showing a system with a
positive flow direction (left-to-right). (B) A two-compartment perfusion model with arterial influxes and venous outfluxes at either
end.

f 0, >0

| — ~ fi>0 k.. —

i,i—1 — Ax i—1,1 — *f,— f <0
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Here the flow f; is defined at the left interface of voxel i, and k; = k;_ ; + k; ; ;. Additional free parameters to the
model are the concentrations ¢,(#) and ¢y 1 (f) at the left and right boundary of the system, respectively. System
influxes (J () and J_(¢)) are defined using these boundary concentrations (co(f) and ¢y, 1 (f)) with the
corresponding rate constants. In a 1D scenario, the incompressibility of flow implies that it is constant: f; = f.
Hence the 1D one-compartment model is fully defined by the 1 4+ N quantities ( f, v;). For numerical stability, the
time step At must be chosen to be smaller than the smallest voxel mean transit time:

At < min {%} (15)

(14)

' i

2.2.2. Two-compartment perfusion model
After discretisation, the two-compartment spatiotemporal model becomes a system of 2N temporal
compartments:

A
cf'(t + At) = ¢f'(t) + _at{ki’?iflcilil(t) + kil () — (K + F)c(t)} (16)
’V.

1

40+A0=4m+éhwﬂdﬂﬂ+HM%40—de+E4@} (17)
Additional free parameters to the model are the arterial- and venous concentrations ¢ (t), ¢; () and
v1(0), o1 (t) at the left and right boundary of the system, respectively. System influxes (J£ (¢) and J*(¢)) are
defined using the arterial boundary concentrations (cy (f) and ¢y, (f)) with the corresponding rate constants.
In 1D systems, the incompressibility of the flow implies that the total flow is constant (f* + f,” = f)and that
the arterial flow at the right boundary of a voxel is that at the left boundary minus the loss by perfusion:

“ =f"— FAx. (18)

i+1
This implies that the arterial flow at any boundary i is fully defined by the field F;and the arterial flow fj at the left
boundary. For given total flow fthe venous flow is then also determined everywhere (f” = f — f"). Hencein the
flow picture the discrete system is fully defined by the 3N + 2 quantities (v, v/, F, £, f,). For numerical
stability, the time step must be smaller than the smallest voxel mean transit time:

At < min Vi , i . (19)
i \k'+FE k'

2.3. Parameter reconstruction

The measured data consist of a 2D tissue concentration matrix Ci;<*° with one value for each voxel i and each
time point k. For given values of the discrete model parameters (volume fractions, flows and boundary
concentrations), a predicted concentration C¥ edis generated by iterating the discrete equations (13) or (16), (17)
with a time step At satisfying equations (15), (19). The resulting concentrations at high temporal resolution are

4



I0P Publishing

Phys. Med. Biol. 69 (2024) 115034 E S Shalom et al

Table 1. Ground truth values for the one-compartment systems. All x values used are in cm. Parr is a population AIF (Parker et al 2006) with a
defined delay (d) and a scaling factor (0 < sy < 1).

Ground Truth Case
Parameter 1 2 3
f(ml/s/cm?) 1 0.5 —0.6
v (ml/ml) 0.24 5in%(0.3x) 0.3 sin%(0.1x) 0.24 5in%(0.3x)
+0.36 cos?(0.15x) + 0.3 +0.36 cos2(0.2x) + 0.3 +0.36 cos?(0.15x) + 0.3
]+(mM/s) PAIF(d: IOS,Sf: 1) PAIF(d: 155;5f: 1) 0
J_ (mM/s) 0 0 Pare(d = 155,57= 1)

Table 2. Ground truth values for the two-compartment systems. All x values used are in cm. \? denotes the ratio of arterial volume
fraction to the total volume fraction; Px(d, sy) is a population-based ATF (Parker et al 2006) with a defined delay (d) and a scaling factor
(0 < sy < 1); G(w, h) denotes a centered Gaussian with width (w) and height (h); and Q(a, b, €) denotes a quadratic starting at a passing b
at system center and endingate.

Ground truth case
Parameter 1 2 3
f$(ml/s/cm?) 0.9 0.512 0.3
fY (ml/s/cm?) —0.5 —0.512 —0.6
F(ml/s/ml) G(0.5L, 0.0626) G(0.16L,, 0.1) 0.0336 5in?((20000 —6266.257)x) +0.021
v(ml/ml) 0.24 sin?(0.3x) +0.36 cos?(0.15x) +0.3 vi+ vy 0.3 sin(0.2x) +0.36 cos?(0.3x) +0.3
A? 0.3 cos?(0.01x) + 0.3 v /v 0.3 sin%((0.007x) + 0.3
v*(ml/ml) Ay If"/Q(19,4.9,19) Ay
v"(ml/ml) y— v If"1/Q(7.1,1.5,7.1) y—v?
J¢ (mM/s) Pa1r(10s,0.6) Par(10s, 1) Par(10s, 1)
J* (mM/s) Pp(155,0.4) Pp(10s,1) Parp(15s,1)

then downsampled to the measured temporal resolution and scaled with the volume fractions (equation (2)
or (10)).

Optimal values for the model parameters are determined by minimizing the root-mean-square difference
between CP* and C5*Y. The initial guesses for the total volume fraction (v) and the boundary concentrations
are estimated from the data. The unknown boundary concentrations are estimated from the concentrations at
the voxel nearest to the boundary. The volume fraction, up to a scaling constant, is estimated from the
concentration at the last time point. Assuming a steady state has been reach at this time, tissue concentrations are
directly proportional to v.

The optimization is performed iteratively over time: parameters are first optimized using only data up to an
initial time fo—chosen to be after the initial peak of concentration has entered the system; subsequently the next
time point is added and the parameters are optimized again, using the solutions from the previous step as initial
values. This process is repeated until all time points are added.

The optimization for each time step is performed by a second-order gradient descent, after normalizing the
parameters to dimensionless quantities in the range [0, 1]. For parameter values at the lower or upper bounds, a
first-order method is applied. For flow values close to zero, the gradient is evaluated at zero. For a given gradient,
the parameters are updated using an Adams update based linesearch (Kingma and Ba 2015). In this Adams
update based approach, the moving averages of gradient and squared gradient are used to guide the
optimization. The resulting update is scaled to restrict parameter updates crossing zero.

The whole pipeline from forward modeling to inversion method is implemented in python.

2.4. Simulations

The parameter reconstruction was evaluated for the one-compartment blood flow model and the two-
compartment perfusion model. For each model, three digital reference objects were evaluated, detailed in
tables 1 and 2). Models have total spatial dimensions of 25.6 cm with Ax = 0.8 cm, evolved to a total time of

80 s. Uniqueness and sensitivity of the solution were estimated by repeating the reconstruction with different
initial guesses, noise levels and levels of temporal undersampling. Reconstruction accuracy was measured for
each parameter field P by the difference between reconstruction (P,..) and ground truth (Py) as a percentage the
mean absolute parameter value:
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Table 3. Initial guesses for parameters applied over all two-compartment
cases. \“ denotes the ratio of arterial volume fraction to the total volume

fraction.

Guess set
Parameter 1 2 3 4 5
f4(ml/s/cm?) 12 12 0.5 0.8 0.3
£ (ml/s/cm?) -1.2 —0.3 -1.0 —0.8 -1.2
F(ml/s/ml) 0.065 0.055 0.045 0.035 0.025
¢ 0.4 0.45 0.5 0.55 0.6

prec - Pgt

E.q(P) =
O =D

(20)

For comparison, the mean and standard deviation of the resulting E,(P) distributions are reported denoted by
E... Since volume fractions and flows are only determined up to a constant, we measure reconstruction accuracy
only for the velocities and rate constants, which are not subject to this redundancy.

Reconstructions of noiseless data with 2 s temporal resolutions were repeated for several sets of initial values.
For the one-compartment cases, these were f = +(11,9, 7, 4, 3, 1). For the two-compartment systems the 5
initial value sets are detailed in table 3.

Sensitivity to temporal undersampling was tested by reconstructing the noiseless systems with data sampled
at2,4,6,8,and 10 s. Sensitivity to noise was tested by repeating reconstructions on data with signal-to-noise
ratio (SNR) levels of 5, 10, 15, and 20. Gaussian noise was added with a standard deviation (o) derived from the
mean concentration:

Cmeas

o= . 21
SNR 1)

The SNR lower limit of 5 was chosen to reflect the typical lower limit used in DCE-MRI protocols (Banerji et al
2012). For each SNR level, reconstructions are run with a given set of initial values for 5 realizations to calculate
95% confidence intervals on the reconstructed parameters.

Computations are run on a single CPU (Intel(R) Xeon(R) Gold 6152 CPU2.10 GHz), with a maximum of
10 000 iterations at each time iteration, and a gradient evaluation step 1 x 10~ *for one-compartment systems
and 5 x 10~ for two-compartment systems.

3. Results

3.1. One-compartment blood flow model

Results for the noise-free one-compartment systems are summarized in figure 2, showing the solutions are
accurate and independent of the initial guesses. The average error E, (mean =+ standard deviation) across all
casesis 2.9 £ 4.7% and 0.4 &= 0.3% for J and u respectively.

Concentration-time data reconstructed from recovered parameter values at one of the initial guesses are
shown in figure 3. Deviations between the ground truth concentration and recovered parameter profiles are not
visually detectable and are between £2.5% of the maximal concentration in each case.

The effect of SNR and sampling interval on parameter reconstruction is summarized in figure 4. Subject-
level results are included in the supplementary information (figures S1 and S2). Average E, across all
simulations at SNR 51is 2.4 + 2.8% and 16.1 & 15.6% for u and J, respectively. The results show the expected
behavior with increasing accuracy and precision at higher SNR and smaller Dt in all parameters. Velocities are
substantially more robust to noise than the influxes, and more accurate and precise at smaller Dt levels.

3.2. Two-compartment perfusion model
Results for the noise-free two-compartment systems are summarized in figure 5, showing that the solutions are
generally less well determined than in the one-compartment case. Reconstruction of arterial velocity (1) and
influx (J) is most accurate with lowest E, of 27.1 + 82.0% and 13.0 & 38.1%, respectively. The perfusion rate
(K" and venous velocity (u") are least precise with E,q of 44.7% =+ 76.5%, and 54.9% =+ 121.4% across all cases,
respectively.

Ground-truth and reconstructed concentrations for initial guess 4 and noise-free data are shown in figure 6.
Despite the substantial errors in the reconstructed parameters, the reconstructed concentration is close to the
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Figure 2. Parameter reconstructions for all noise-free one-compartment system cases. The solid black line indicates the ground truth,
and the colored dots show reconstructions with different initial guesses.

ground truth and visually virtually indistinguishable. Since an accurate fit to the data is obtained with inaccurate
parameters, this shows that multiple solutions are compatible with the observations.

Figure 7(a) shows the impact of SNR and undersampling on parameter accuracy and precision, showing the
expected trend of increasing accuracy and precision at higher SNR and smaller Dt. The magnitude of the error is
generally comparable between parameters except for the perfusion rate K™, which is more sensitive to noise
than the other parameters, and the venous velocity u ", which appears particularly sensitive to undersampling.
Supporting figures S3, $4, S5, S6, S7, S8 illustrate these effects in more detail for all three example cases.

4. Discussion

The aim of this in-silico study was to determine if unconstrained spatiotemporal models for DCE-MRI are
fundamentally identifiable. The data indicate that this is the case for one-compartmental blood flow models, but
not for two-compartmental perfusion models.

In the absence of significant measurement error, parameters of the one-compartment model can be
reconstructed accurately without imposing additional constraints on the model. They are identical even with
widely different choices of the initial guesses, suggesting the solution is also unique. Reconstructions of the
influxes at the boundary of the system are also accurate, confirming the idea that spatiotemporal models remove
the need for a separate measurement of an arterial input function.

While the analysis in this study used non-linear optimization, the uniqueness of the one-compartmental
solutions aligns with the fact that the model equations can be recast in a linear form (Sourbron 2014)—in a
similar way as for standard temporal one-compartmental models (Flouri et al 2016). We chose not to implement
the model in the linear form as this is known to be more noise-sensitive, and does not translate as easily to the
two-compartmental scenario. Measurement error (noise and undersampling) naturally reduces the accuracy
and precision of the parameters, but in a predictable and expected manner. One open question is how the
parameter accuracy and precision compares to a conventional analysis using measured input functions and
standard voxel-by-voxel temporal models.

Parameter reconstructions are significantly less accurate for the two-compartmental perfusion model.
Multiple solutions have been found that are compatible with the data, and therefore a single optimal solution
cannot be identified using a goodness-of-fit criterion alone.

7
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Figure 3. Comparison of the recovered concentration values from the retrieved parameters against the ground truth, alongside the
percentage difference for the maximal concentration. Shown are one-compartment cases 1, 2 and 3 in rows (a), (b), and (c),
respectively. Differences above or below £2.5% of the maximum concentration value are shown by dark red or dark blue, respectively.

Dt (b).

u (cm/s) J (mM/s) u (cmis) J (mMyJs)
5
30
4 30 30
|u§3 20 .IE)ZO 20
X xX
2 (=)
10 10
; é o= : g i
0 0 0] —=— - Q 0
5 10 15 20 5 10 15 20 2 4 6 8 > 4 6 8
SNR SNR Dt (s) Dt (s)
(a) (b)

Figure 4. Box plots of reconstruction errors for all one-compartment parameters as a function of SNR (a) and temporal sampling

One approach to resolving the degeneracy in the two-compartmental model may involve modifying the
experimental conditions to increase the structure in the data. However, the options in DCE-MRI are limited.
The smallest sampling interval considered in this study was 2 s, and therefore there may be some room for

improvement by considering faster scan sequences. Beyond that, the only additional variable that can be
modified substantially is the injection protocol. The current setup uses a single bolus injection, and while this
can easily be modified in practice to split the dose over two injections (Ingrisch and Sourbron 2013), there is
currently little evidence that this translates to more accurate solutions.
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Figure 5. Parameter reconstructions for all noise-free two-compartment system cases. The solid black line indicates the ground truth,
and the colored dots show reconstructions with different initial guesses.

Hence this may indicate that additional constraints are needed to pin down multi-compartmental
spatiotemporal models. Possible solutions previously proposed for one-compartment systems may well
translate to two-compartment systems, such as the use of Darcy flows or other physical constraints to reduce the
number of free variables (Naevdal et al 2016), adding regularization to impose smoothness of the solution
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Figure 6. Comparison of the recovered concentration values from the retrieved parameters against the ground truth, alongside the
percentage difference for the maximal concentration. Shown are two-compartment cases 1, 2 and 3 in rows (a), (b), and (c),
respectively for initial guess 4. Differences above or below 5% of the maximum concentration value are shown by dark red or dark
blue, respectively.

(Liuetal 2021, Zhou etal 2021, Zhang et al 2022, 2023), fixing less critical parameters to literature values
(Pellerin et al 2007), or reverting to a measured AIF at the boundaries of the imaging slab. The use of physical
constraints derived from principles of fluid dynamics and porous media theory presents a particularly attractive
approach as it also provides a mechanism for studying the mechanical properties of physiological flow. While
such constraints may not be necessary for one-compartmental systems, they may prove essential in the multi-
compartment case.

Beyond modifying experimental conditions or imposing additional constraints, another strategy for
reducing the degeneracy in the solutions may well be to improve the optimization itself. Setting suitable initial
conditions, for instance, may well help to bias the solution towards the correct value, and may be feasible
without loosing generality. For instance, exploratory simulations with the 1D toy models suggest that initial
values where the arterial velocity is higher than the venous velocity leads to better parameter recovery than
randomly chosen initial values, and this is consistent with physical reality. An alternative approach, common for
instance in other inverse problems in imaging such as coregistration (Studholme et al 1996, Maes et al 1999),
may be to employ a multi-resolution approach, fitting parameters initially at coarse resolution and then stepwise
refining the estimates until the image resolution is reached. Additionally, considering the observation that
estimates are most accurate in the arterial parameters, an improvement may be possible by reparametrizing the
model in terms of the arterial flow field f“(x) rather than using the perfusion field F(x) as a primary variable.
Furthermore, volume fractions based on spatial variation reported in vivo could be applied. Although, an
investigation into the spatial variation of volume fractions showed that deviation from the ground truth
concentration and volume fractions varied similarly in areas of high and low spatial volume fraction variation.
Finally, solutions proposed for temporal model fitting in DCE-MRI may well help in spatiotemporal modeling
as well, such as the use of model selection, which can potentially be generalized to a voxel-by-voxel approach,
and/or using the results of one-compartment fits to initialize a two-compartment analysis.
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Figure 7. Distribution of each parameter error for the two-compartment system relative to the absolute mean parameter value within
each system. The distribution is shown across all 3 cases for (a) all noise realizations at each SNR; and (b) undersampling rates.

The optimal strategy may also depend on the parameter that is the primary interest of the measurement. As
shown, results are considerably more reliable in the properties of the upstream (arterial) compartment
compared to the distal (venous) compartment and particularly the exchange parameter (perfusion) itself. The
venous compartment is downstream and determined by perfusion from the upstream artery. Therefore, errors
may be compounded, or the optimization hindered due to the interplay of these many parameters, potentially
increasing the sensitivity to measurement error. Hence in clinical applications where the primary aim is to
characterize the arterial system, issues of uniqueness identified in this study may be less critical. Unfortunately,
the interest in many key clinical applications of perfusion imaging, such as acute stroke (Demeestere et al 2020)
or cancer (van Dijken et al 2019), is primarily in a measurement of perfusion as this is a key metric to
understanding tissue viability or metabolic activity.

This article considers purely intra-vascular models with either a singular vascular compartment or separate
arterial and venous compartments with direct exchange from perfusion (equation (9)). This is in contrast to the
widely applied single voxel approaches of the tofts-kety model (TKM) and extended tofts-kety model (ETKM)
which describe tissue in terms of a vascular and an extravascular compartment. To probe perfusion the blood
flow should be considered which extends the ETKM to the standard two-compartment exchange model
(Sourbron and Buckley 2012). To assess permeability, the TKM and ETKM mainly utilize the K"*"* parameter
which characterizes the transfer of contrast agent into the extravascular space from the vascular space. An over
estimation of parameters from the TKM has been reported (Sinno et al 2021) due to the effect of inter-voxel
exchange which is neglected. While the result in this study has shown that measurement of perfusion comes with
significant numerical error, the use of spatiotemporal modeling does remove the equally substantial error that
comes from assuming a single upstream feeding artery (Calamante et al 2006). It is currently unknown whether,
and to what extent, this offsets the numerical reconstruction errors observed in the spatiotemporal model.

This study is obviously limited by the use a of a one-dimensional toy model. In reality, fully unconstrained
spatiotemporal modeling for DCE is only relevant when applied to 3D data, as through-plane exchange of
indicator cannot be excluded in realistic scenarios. However, application of multi-compartmental modeling in
3D comes with significant computational challenges that are currently largely unresolved. Standard gradient-
descent type optimization as performed in this study is unlikely to be practically feasible in 3D, though this has
not yet been fully explored. The use of 1D models allows for a flexible exploration of fundamental issues of
parameter identifiability, but there is no guarantee that the findings translate to the 3D scenario. Indeed, 3D data
are significantly more entangled due to the spatial connections in the other dimensions, and this may well help to
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resolved any degeneracies found in 1D. Future studies should therefore focus in the first place on developing
computational methods that are able to solve spatiotemporal two-compartment models in reasonable
computation times, before the issue of parameter identifiability can be investigated in-silico in 3D data. Recent
developments in deep learning, specifically the use of physics informed neural networks (PINNS) and their
successful application in related problems, has offered some hope that a solution may be technically feasible.

5. Conclusions

This study provides proof of concept that one-compartmental blood flow models are fully identifiable and do
not require a separate measurement of the AIF. Arterial properties of two-compartmental perfusion models
have comparable accuracy but perfusion fields and venous flows cannot be measured reliably. Future studies
should focus on exploring the use of physical constraints, improved optimization and on development of
computational solutions for the 3D case.
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