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Abstract

Objective. Standardmodels for perfusion quantification inDCE-MRI produce a bias by treating voxels

as isolated systems. Spatiotemporalmodels can remove this bias, but it is unknownwhether they are

fundamentally identifiable. The aimof this study is to investigate this question in silico using one-

dimensional toy systemswith a one-compartment bloodflowmodel and a two-compartment

perfusionmodel.Approach. For each of the twomodels, identifiability is explored theoretically and in-

silico for three systems. Concentrations over space and time are simulated by forward propagation.

Different levels of noise and temporal undersampling are added to investigate sensitivity to

measurement error.Model parameters arefitted using a standard gradient descent algorithm, applied

iteratively with a stepwise increasing timewindow.Modelfitting is repeatedwith different initial

values to probe uniqueness of the solution. Reconstruction accuracy is quantified for each parameter

by comparison to the ground truth.Main results.Theoretical analysis shows thatflows and volume

fractions are only identifiable up to a constant, and that this degeneracy can be removed by proper

choice of parameters. Simulations show that in all cases, the tissue concentrations can be reconstructed

accurately. The one-compartmentmodel shows accurate reconstruction of blood velocities and

arterial input functions, independent of the initial values and robust tomeasurement error. The two-

compartmental perfusionmodel was not fully identifiable, showing good reconstruction of arterial

velocities and input functions, butmultiple valid solutions for the perfusion parameters and venous

velocities, and a strong sensitivity tomeasurement error in these parameters. Significance.These

results support the use of one-compartment spatiotemporalflowmodels, but two-compartment

perfusionmodels were not sufficiently identifiable. Future studies should investigate whether this

degeneracy is resolved inmore realistic 2D and 3D systems, by adding physically justified constraints,

or by optimizing experimental parameters such as injection duration or temporal resolution.

1. Introduction

Conventional pharmacokinetic (PK)modeling of perfusion imaging typically quantifies tracer transport

parameters using an isolated single-voxel approach. Although thesemethods are highly scalable and

computationally efficient, they suffer from the fundamental assumption that each voxel acts as an isolated

systemwith a known global inlet concentration—the arterial input function or AIF. This approximation leads to

significantmodel errors which increase with spatial resolution (Buckley 2002, Calamante 2013,Willats and

Calamante 2013,Hanson et al 2018).

In theory, this bias can be removed by the use of spatiotemporal PKmodels (Sourbron 2014).

Implementations of this approach havemainly focused on one-compartmentmodels with transport by

diffusion (Koh 2013), convection (Zhou et al 2021, Zhang et al 2023), or both (Sourbron 2015, Elkin et al 2019,
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Zhang et al 2022). Hybrid approaches have also been proposed, coupling a one-compartment spatiotemporal

model for interstitial transport with vascular deliverymodeled by a single, global AIF (Pellerin et al 2007,

Fluckiger et al 2013, Sinno et al 2021, Sainz-DeMena et al 2022, Sinno et al 2022). Experience with fully

spatiotemporal two-compartment systems is extremely limited (Naevdal et al 2016).

All the above implementations apply additional constraints on the reconstructedmodel parameters (Shalom

et al 2023, 2024a, 2024b), for instance an assumption that diffusion is constant in space (Pellerin et al 2007), that

the diffusion gradient between adjacent voxels is negligible (Fluckiger et al 2013), that parameter fields have

small spatial gradients (Liu et al 2021, Zhou et al 2021, Zhang et al 2022, 2023), that transport is only radial in a

lesion (Sinno et al 2021, 2022), that perfusion ismodeled byDarcy flow (Naevdal et al 2016), or that parameter

fields are in a known relationship to each other (Naevdal et al 2016). Constraints of this type are included to

reduce the computational complexity, but it is not always clear that they are physically justified, creating a risk of

newbiases. For instance, it has been suggested thatDarcyflow (Whitaker 1986) cannot capture the complete

physiology of the capillary bedwithout furthermodification (Peyrounette et al 2018).

Previous studies did not investigate whether such additional constraints, and the biases they produce, are

actually necessary. A simple parameter-counting exercise suggest theymight not be: a 3D spatiotemporalmodel

ismassively overdetermined, with the data points vastly outnumbering the unknowns. The aimof this study,

therefore, was to investigate whether unconstrained spatiotemporal PKmodels are fundamentally identifiable.

The study addresses the question in 1D toymodels for intravascular tracer where solutions can be generated

efficiently with simple optimization routines.

2.Methodology

The question of identifiability is investigated for two nestedmodels of increasing complexity: a one-

compartment convective blood flowmodel, and a two-compartment perfusionmodel with convective blood

transport (Sourbron 2014). The perfusionmodel was selected as it presents challenging conditions formodel

fitting due to the relative similarity between the two compartments (arterial and venous).

2.1. Theory

2.1.1. One-compartment blood flowmodel

The one compartment blood flowmodel is defined by the transport equation

v x
c

t
x t f x c x t, , 1( ) ( ) · ( ) ( ) ( )

     ¶
¶

= -

Here 0� v� 1 (dimensionless) is the blood volume fraction, and f

in units ofmL/s/cm2 is theflowof blood

(ml/s) through a unit tissue area (cm2
). The local tissue concentration c (mmol/ml)measures the amount of

contrast agent (mmol) permLof blood, and is not directlymeasurable. Rather, what ismeasured inMRI is the

tissue concentrationC (mmol/ml), or the amount of contrast agent permLof tissue:

C x t v x c x t, , . 2( ) ( ) ( ) ( )
  

=

Wewill assume throughout that blood and tissue are incompressible, so that f

is divergence free:

f x 0. 3· ( ) ( )
  
 =

Thismodel therefore has 3 free parameters per interior voxel, with 4 scalarfields v f,( )

, and one degree of

freedom removed by theflow incompressibility. Expressing the transport equation in terms of the tissue

concentration shows thismore explicitly:

C

t
uC 4· ( )

 ¶
¶

= -

Herewe introduced the blood velocity u f v
 
= , which represents 3 degrees of freedomand is not divergence-

free unless the blood volume fraction v is constant.

Without further constraints, the solution for v f,( )

can only be determined up to a constant: if v f,( )


solve

the transport equations, then v f,( )


a a are solutions too, for any constantα. Therefore an additional constraint

is needed to pin down the values unambiguously, for instance by assuming the volume fraction in one particular

reference location is known.One approach could be to ensure that the spatial resolution is sufficiently high so

that some voxels can be foundwhich lie entirely inside a venous vessel. If these voxels are at location x0

, we can

safely assume that v x 10( )


= . Alternatively, if the velocity u

provides sufficient information for the particular

application, and volumes or blood flows are not required, themodel can be solved in the tissue concentration

picture directly (equation (4)).
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2.1.2. Two-compartment perfusionmodel

The two-compartment perfusionmodel involves an arterial (a) and venous (v) blood compartment, withmono-

directional exchange from a to v by a perfusionfield F x( )

. Dropping coordinates from the definitions fromhere

on for simplicity, the system is defined by:

v
c

t
f c Fc 5a

a
a a a· ( )

 ¶
¶

= - -

v
c

t
f c Fc , 6v

v
v v a· ( )

 ¶
¶

= - +

where superscript indicates compartmental transport coefficients, concentrations, and volume fractions. The

total volume fraction in these systems is constrained as 0� v a+ v v� 1. Since the total blood flow is

incompressible, we nowhave:

f f 0. 7
a v

· ( ) ( )
  
 + =

Incompressibility of blood flow therefore requires the total inflow to equal the total outflow across both the

arterial and venous compartments. For the arterial compartment this yields an outflow characterized by the

perfusionfield (F)which provides a venous inflow, derived in Sourbron (2014) as:

n f r F rd d . 8
V

a

V

2 3∮ ∭ˆ · ( )


- =
¶

Application of the divergence theorem converts this closed surface integral andwhen applied to a small volume

this produces a local relation for the perfusion field (F) in terms of the arterial flow ( f
a
):

F f . 9
a

· ( )
 

= -

Themodel has 7 free parameters per interior voxel: 8 scalar fields v f v f, ; ,a a v v
( )

 
, with one degree of freedom

again removed via the flow incompressibility. Themeasurable quantity is the total tissue concentration:

C v c v c . 10a a v v ( )= +

The transport equations can bewritten in terms of the tissue concentrationsC a
= v ac a andC v

= v vc v by

defining arterial- and venous blood velocities u f va a a 
= and u f vv v v 

= and the perfusion rate constant

K va
= F/v a:

C

t
u C K C 11

a
a a va a· ( )

 ¶
¶

= - -

C

t
u C K C . 12

v
v v va a· ( )

 ¶
¶

= - +

This representation expresses themodels directly in terms of 7 unconstrained scalar fields. As for the one-

compartment case, the volumes and flows are only determined up to a constant: if v f,a a
( )


and v f,v v

( )


solve the

equations, then v f,a a
( )


a a and v f,v v

( )


a a are solutions too, for any constantα. As before, the solution can be

pinned down by adding a constraint such as v x 1v
0( )


= for some suitably chosen location x0

in a large venous

vessel.

2.2.Discrete one-dimensions systems

Since the delivery of nutrients to tissue is a function of blood flow rather than blood velocity, clinical utilitymost

likely hinges on the ability tomeasure flow.Hencewewill simulate all systems using the v f,( )

representation. In

order to apply the spatiotemporal compartmentmodels to a systemofN voxelsmeasured atK time points, an

upwind discretisation is applied in space and first-order discretisation in time. The result is illustrated infigure 1.

2.2.1. One-compartment blood flowmodel

After discretisation, the one-compartment spatiotemporalmodel reduces to anN-compartment temporal

model Sourbron (2014):

c t t c t
t

v
k c t k c t k c t , 13i i

i
i i i i i i i i, 1 1 , 1 1( ) ( ) { ( ) ( ) ( )} ( )+ D = +

D
+ -- - + +

whereΔt denotes the time step, and quantities ci(t) and vi defined at the voxel center. The rate constants kij from j

to i are positive and defined by:
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⎧
⎨
⎩

⎧
⎨
⎩

k

f

x
f

f

k

f

f

x
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, 0

0, 0

0, 0

, 0
14i i

i
i

i

i i

i

i
i

, 1 1, ( )



= D

>
= -

D
<

- -

Here theflow fi is defined at the left interface of voxel i, and ki= ki−1,i+ ki+1,i. Additional free parameters to the

model are the concentrations c0(t) and cN+1(t) at the left and right boundary of the system, respectively. System

influxes (J+(t) and J
−
(t)) are defined using these boundary concentrations (c0(t) and cN+1(t))with the

corresponding rate constants. In a 1D scenario, the incompressibility offlow implies that it is constant: fi= f.

Hence the 1Done-compartmentmodel is fully defined by the 1+N quantities ( f, vi). For numerical stability, the

time stepΔtmust be chosen to be smaller than the smallest voxelmean transit time:

⎧⎨⎩
⎫⎬⎭t

v

k
min . 15

i

i

i

( )D <

2.2.2. Two-compartment perfusionmodel

After discretisation, the two-compartment spatiotemporalmodel becomes a systemof 2N temporal

compartments:

c t t c t
t

v
k c t k c t k F c t 16i

a
i
a

i
a i i

a
i
a

i i
a

i
a

i
a

i i
a

, 1 1 , 1 1( ) ( ) { ( ) ( ) ( ) ( )} ( )+ D = +
D

+ - +- - + +

c t t c t
t

v
k c t k c t k c t F c t 17i

v
i
v

i
v i i

v
i
v

i i
v

i
v

i
v

i
v

i i
a

, 1 1 , 1 1( ) ( ) { ( ) ( ) ( ) ( )} ( )+ D = +
D

+ - +- - + +

Additional free parameters to themodel are the arterial- and venous concentrations c t c t,a v
0 0( ) ( ) and

c t c t,N
a

N
v

1 1( ) ( )+ + at the left and right boundary of the system, respectively. System influxes (J ta ( )+ and J ta ( )- ) are
defined using the arterial boundary concentrations (c ta

0 ( ) and c tN
a

1( )+ )with the corresponding rate constants.
In 1D systems, the incompressibility of theflow implies that the totalflow is constant ( f f f

i
a

i
v+ = ) and that

the arterialflow at the right boundary of a voxel is that at the left boundaryminus the loss by perfusion:

f f F x. 18
i
a

i
a

i1
( )= - D+

This implies that the arterialflow at any boundary i is fully defined by thefield Fi and the arterialflow f0
a at the left

boundary. For given totalflow f the venous flow is then also determined everywhere ( f f f
i
v

i
a= - ). Hence in the

flowpicture the discrete system is fully defined by the 3N+ 2 quantities v v F f f, , , ,i
a

i
v

i
a v
0 0

( ). For numerical
stability, the time stepmust be smaller than the smallest voxelmean transit time:

⎧⎨⎩
⎫⎬⎭

t
v

k F

v

k
min , . 19

i

i
a

i
a

i

i
v

i
v

( )D <
+

2.3. Parameter reconstruction

Themeasured data consist of a 2D tissue concentrationmatrixCmeas
ik with one value for each voxel i and each

time point k. For given values of the discretemodel parameters (volume fractions, flows and boundary

concentrations), a predicted concentrationCpred
ik is generated by iterating the discrete equations (13) or (16), (17)

with a time stepΔt satisfying equations (15), (19). The resulting concentrations at high temporal resolution are

Figure 1. Illustration of the discretized compartmentmodels. (A)Aone-compartment blood flowmodel, showing a systemwith a
positive flowdirection (left-to-right). (B)A two-compartment perfusionmodel with arterial influxes and venous outfluxes at either
end.
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then downsampled to themeasured temporal resolution and scaledwith the volume fractions (equation (2)

or (10)).

Optimal values for themodel parameters are determined byminimizing the root-mean-square difference

betweenCmeas
ik andCpred

ik . The initial guesses for the total volume fraction (v) and the boundary concentrations

are estimated from the data. The unknown boundary concentrations are estimated from the concentrations at

the voxel nearest to the boundary. The volume fraction, up to a scaling constant, is estimated from the

concentration at the last time point. Assuming a steady state has been reach at this time, tissue concentrations are

directly proportional to v.

The optimization is performed iteratively over time: parameters are first optimized using only data up to an

initial time t0—chosen to be after the initial peak of concentration has entered the system; subsequently the next

time point is added and the parameters are optimized again, using the solutions from the previous step as initial

values. This process is repeated until all time points are added.

The optimization for each time step is performed by a second-order gradient descent, after normalizing the

parameters to dimensionless quantities in the range [0, 1]. For parameter values at the lower or upper bounds, a

first-ordermethod is applied. Forflow values close to zero, the gradient is evaluated at zero. For a given gradient,

the parameters are updated using anAdams update based linesearch (Kingma andBa 2015). In this Adams

update based approach, themoving averages of gradient and squared gradient are used to guide the

optimization. The resulting update is scaled to restrict parameter updates crossing zero.

Thewhole pipeline from forwardmodeling to inversionmethod is implemented in python.

2.4. Simulations

The parameter reconstructionwas evaluated for the one-compartment blood flowmodel and the two-

compartment perfusionmodel. For eachmodel, three digital reference objects were evaluated, detailed in

tables 1 and 2).Models have total spatial dimensions of 25.6 cmwithΔx= 0.8 cm, evolved to a total time of

80 s. Uniqueness and sensitivity of the solutionwere estimated by repeating the reconstructionwith different

initial guesses, noise levels and levels of temporal undersampling. Reconstruction accuracywasmeasured for

each parameter field P by the difference between reconstruction (Prec) and ground truth (Pgt) as a percentage the

mean absolute parameter value:

Table 1.Ground truth values for the one-compartment systems. All x values used are in cm. PAIF is a population AIF (Parker et al 2006)with a
defined delay (d) and a scaling factor (0 � sf � 1).

GroundTruthCase

Parameter 1 2 3

f (ml/s/cm2
) 1 0.5 −0.6

v (ml/ml) x0.24 sin 0.32( )
x0.36 cos 0.15 0.32( )+ +

x0.3 sin 0.12( )
x0.36 cos 0.2 0.32( )+ +

x0.24 sin 0.32( )
x0.36 cos 0.15 0.32( )+ +

J+ (mM/s) PAIF(d = 10s, sf = 1) PAIF(d = 15s, sf = 1) 0

J
−

(mM/s) 0 0 PAIF(d = 15s, sf = 1)

Table 2.Ground truth values for the two-compartment systems. All x values used are in cm.λ a denotes the ratio of arterial volume
fraction to the total volume fraction; PAIF(d, sf) is a population-based AIF (Parker et al 2006)with a defined delay (d) and a scaling factor
(0 � sf � 1);G(w, h) denotes a centeredGaussianwithwidth (w) and height (h); andQ(a, b, e) denotes a quadratic starting at a passing b
at system center and ending at e.

Ground truth case

Parameter 1 2 3

f a1 (ml/s/cm2
) 0.9 0.512 0.3

f v1 (ml/s/cm2
) −0.5 −0.512 −0.6

F (ml/s/ml) G(0.5Lx, 0.0626) G L0.16 , 0.1x( ) 0.0336 sin 200002(( −6266.25π)x)+0.021

v (ml/ml) x0.24 sin 0.32( ) x0.36 cos 0.152( )+ +0.3 v a + v v x0.3 sin 0.22( ) x0.36 cos 0.32( )+ +0.3

λ
a x0.3 cos 0.01 0.32( ) + v a/v x0.3 sin 0.007 0.32(( ) +

v a(ml/ml) λ
av |f a|/Q(19, 4.9, 19) λ

av

v v(ml/ml) v − v a |f v|/Q(7.1, 1.5, 7.1) v − v a

Ja
+ (mM/s) PAIF(10s, 0.6) PAIF(10s, 1) PAIF(10s, 1)

Ja
- (mM/s) PAIF(15s, 0.4) PAIF(10s, 1) PAIF(15s, 1)

5
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E P
P P

P
100. 20rel

rec gt

gt

( )
(∣ ∣)

( )
m

=
-

´

For comparison, themean and standard deviation of the resulting Erel(P) distributions are reported denoted by

Erel
¯ . Since volume fractions andflows are only determined up to a constant, wemeasure reconstruction accuracy

only for the velocities and rate constants, which are not subject to this redundancy.

Reconstructions of noiseless datawith 2 s temporal resolutionswere repeated for several sets of initial values.

For the one-compartment cases, thesewere f=±(11, 9, 7, 4, 3, 1). For the two-compartment systems the 5

initial value sets are detailed in table 3.

Sensitivity to temporal undersamplingwas tested by reconstructing the noiseless systemswith data sampled

at 2, 4, 6, 8, and 10 s. Sensitivity to noise was tested by repeating reconstructions on datawith signal-to-noise

ratio (SNR) levels of 5, 10, 15, and 20. Gaussian noise was addedwith a standard deviation (σ) derived from the

mean concentration:

C

SNR
. 21

meas¯
( )s =

The SNR lower limit of 5was chosen to reflect the typical lower limit used inDCE-MRI protocols (Banerji et al

2012). For each SNR level, reconstructions are runwith a given set of initial values for 5 realizations to calculate

95% confidence intervals on the reconstructed parameters.

Computations are run on a single CPU (Intel(R)Xeon(R)Gold 6152CPU2.10 GHz), with amaximumof

10 000 iterations at each time iteration, and a gradient evaluation step 1× 10−4 for one-compartment systems

and 5× 10−5 for two-compartment systems.

3. Results

3.1.One-compartment bloodflowmodel

Results for the noise-free one-compartment systems are summarized infigure 2, showing the solutions are

accurate and independent of the initial guesses. The average error Erel
¯ (mean± standard deviation) across all

cases is 2.9± 4.7% and 0.4± 0.3% for J and u respectively.

Concentration-time data reconstructed from recovered parameter values at one of the initial guesses are

shown infigure 3.Deviations between the ground truth concentration and recovered parameter profiles are not

visually detectable and are between±2.5%of themaximal concentration in each case.

The effect of SNR and sampling interval on parameter reconstruction is summarized infigure 4. Subject-

level results are included in the supplementary information (figures S1 and S2). Average Erel
¯ across all

simulations at SNR5 is 2.4± 2.8% and 16.1± 15.6% for u and J, respectively. The results show the expected

behaviorwith increasing accuracy and precision at higher SNR and smallerDt in all parameters. Velocities are

substantiallymore robust to noise than the influxes, andmore accurate and precise at smallerDt levels.

3.2. Two-compartment perfusionmodel

Results for the noise-free two-compartment systems are summarized infigure 5, showing that the solutions are

generally less well determined than in the one-compartment case. Reconstruction of arterial velocity (u a
) and

influx (J a) ismost accurate with lowest Erel
¯ of 27.1± 82.0% and 13.0± 38.1%, respectively. The perfusion rate

(K va
) and venous velocity (u v

) are least precise with Erel
¯ of 44.7%± 76.5%, and 54.9%± 121.4% across all cases,

respectively.

Ground-truth and reconstructed concentrations for initial guess 4 and noise-free data are shown infigure 6.

Despite the substantial errors in the reconstructed parameters, the reconstructed concentration is close to the

Table 3. Initial guesses for parameters applied over all two-compartment
cases.λ a denotes the ratio of arterial volume fraction to the total volume
fraction.

Guess set

Parameter 1 2 3 4 5

f a1 (ml/s/cm2
) 1.2 1.2 0.5 0.8 0.3

f v1 (ml/s/cm2
) −1.2 −0.3 −1.0 −0.8 −1.2

F (ml/s/ml) 0.065 0.055 0.045 0.035 0.025

λ
a 0.4 0.45 0.5 0.55 0.6
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ground truth and visually virtually indistinguishable. Since an accurate fit to the data is obtainedwith inaccurate

parameters, this shows thatmultiple solutions are compatible with the observations.

Figure 7(a) shows the impact of SNR and undersampling on parameter accuracy and precision, showing the

expected trend of increasing accuracy and precision at higher SNR and smallerDt. Themagnitude of the error is

generally comparable between parameters except for the perfusion rateK va, which ismore sensitive to noise

than the other parameters, and the venous velocity u v, which appears particularly sensitive to undersampling.

Supporting figures S3, S4, S5, S6, S7, S8 illustrate these effects inmore detail for all three example cases.

4.Discussion

The aimof this in-silico studywas to determine if unconstrained spatiotemporalmodels forDCE-MRI are

fundamentally identifiable. The data indicate that this is the case for one-compartmental blood flowmodels, but

not for two-compartmental perfusionmodels.

In the absence of significantmeasurement error, parameters of the one-compartmentmodel can be

reconstructed accurately without imposing additional constraints on themodel. They are identical evenwith

widely different choices of the initial guesses, suggesting the solution is also unique. Reconstructions of the

influxes at the boundary of the system are also accurate, confirming the idea that spatiotemporalmodels remove

the need for a separatemeasurement of an arterial input function.

While the analysis in this study used non-linear optimization, the uniqueness of the one-compartmental

solutions alignswith the fact that themodel equations can be recast in a linear form (Sourbron 2014)—in a

similar way as for standard temporal one-compartmentalmodels (Flouri et al 2016).We chose not to implement

themodel in the linear form as this is known to bemore noise-sensitive, and does not translate as easily to the

two-compartmental scenario.Measurement error (noise and undersampling)naturally reduces the accuracy

and precision of the parameters, but in a predictable and expectedmanner. One open question is how the

parameter accuracy and precision compares to a conventional analysis usingmeasured input functions and

standard voxel-by-voxel temporalmodels.

Parameter reconstructions are significantly less accurate for the two-compartmental perfusionmodel.

Multiple solutions have been found that are compatible with the data, and therefore a single optimal solution

cannot be identified using a goodness-of-fit criterion alone.

Figure 2.Parameter reconstructions for all noise-free one-compartment system cases. The solid black line indicates the ground truth,
and the colored dots show reconstructionswith different initial guesses.
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One approach to resolving the degeneracy in the two-compartmentalmodelmay involvemodifying the

experimental conditions to increase the structure in the data.However, the options inDCE-MRI are limited.

The smallest sampling interval considered in this studywas 2 s, and therefore theremay be some room for

improvement by considering faster scan sequences. Beyond that, the only additional variable that can be

modified substantially is the injection protocol. The current setup uses a single bolus injection, andwhile this

can easily bemodified in practice to split the dose over two injections (Ingrisch and Sourbron 2013), there is

currently little evidence that this translates tomore accurate solutions.

Figure 3.Comparison of the recovered concentration values from the retrieved parameters against the ground truth, alongside the
percentage difference for themaximal concentration. Shown are one-compartment cases 1, 2 and 3 in rows (a), (b), and (c),
respectively. Differences above or below±2.5%of themaximumconcentration value are shown by dark red or dark blue, respectively.

Figure 4.Box plots of reconstruction errors for all one-compartment parameters as a function of SNR (a) and temporal sampling
Dt (b).

8

Phys.Med. Biol. 69 (2024) 115034 E S Shalom et al



Hence thismay indicate that additional constraints are needed to pin downmulti-compartmental

spatiotemporalmodels. Possible solutions previously proposed for one-compartment systemsmaywell

translate to two-compartment systems, such as the use ofDarcy flows or other physical constraints to reduce the

number of free variables (Naevdal et al 2016), adding regularization to impose smoothness of the solution

Figure 5.Parameter reconstructions for all noise-free two-compartment system cases. The solid black line indicates the ground truth,
and the colored dots show reconstructionswith different initial guesses.
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(Liu et al 2021, Zhou et al 2021, Zhang et al 2022, 2023),fixing less critical parameters to literature values

(Pellerin et al 2007), or reverting to ameasuredAIF at the boundaries of the imaging slab. The use of physical

constraints derived fromprinciples offluid dynamics and porousmedia theory presents a particularly attractive

approach as it also provides amechanism for studying themechanical properties of physiological flow.While

such constraintsmay not be necessary for one-compartmental systems, theymay prove essential in themulti-

compartment case.

Beyondmodifying experimental conditions or imposing additional constraints, another strategy for

reducing the degeneracy in the solutionsmaywell be to improve the optimization itself. Setting suitable initial

conditions, for instance,maywell help to bias the solution towards the correct value, andmay be feasible

without loosing generality. For instance, exploratory simulationswith the 1D toymodels suggest that initial

valueswhere the arterial velocity is higher than the venous velocity leads to better parameter recovery than

randomly chosen initial values, and this is consistent with physical reality. An alternative approach, common for

instance in other inverse problems in imaging such as coregistration (Studholme et al 1996,Maes et al 1999),

may be to employ amulti-resolution approach,fitting parameters initially at coarse resolution and then stepwise

refining the estimates until the image resolution is reached. Additionally, considering the observation that

estimates aremost accurate in the arterial parameters, an improvementmay be possible by reparametrizing the

model in terms of the arterialflowfield f a(x) rather than using the perfusion field F(x) as a primary variable.

Furthermore, volume fractions based on spatial variation reported in vivo could be applied. Although, an

investigation into the spatial variation of volume fractions showed that deviation from the ground truth

concentration and volume fractions varied similarly in areas of high and low spatial volume fraction variation.

Finally, solutions proposed for temporalmodel fitting inDCE-MRImaywell help in spatiotemporalmodeling

aswell, such as the use ofmodel selection, which can potentially be generalized to a voxel-by-voxel approach,

and/or using the results of one-compartment fits to initialize a two-compartment analysis.

Figure 6.Comparison of the recovered concentration values from the retrieved parameters against the ground truth, alongside the
percentage difference for themaximal concentration. Shown are two-compartment cases 1, 2 and 3 in rows (a), (b), and (c),
respectively for initial guess 4. Differences above or below±5%of themaximumconcentration value are shown by dark red or dark
blue, respectively.
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The optimal strategymay also depend on the parameter that is the primary interest of themeasurement. As

shown, results are considerablymore reliable in the properties of the upstream (arterial) compartment

compared to the distal (venous) compartment and particularly the exchange parameter (perfusion) itself. The

venous compartment is downstream anddetermined by perfusion from the upstream artery. Therefore, errors

may be compounded, or the optimization hindered due to the interplay of thesemany parameters, potentially

increasing the sensitivity tomeasurement error.Hence in clinical applications where the primary aim is to

characterize the arterial system, issues of uniqueness identified in this studymay be less critical. Unfortunately,

the interest inmany key clinical applications of perfusion imaging, such as acute stroke (Demeestere et al 2020)

or cancer (vanDijken et al 2019), is primarily in ameasurement of perfusion as this is a keymetric to

understanding tissue viability ormetabolic activity.

This article considers purely intra-vascularmodels with either a singular vascular compartment or separate

arterial and venous compartments with direct exchange fromperfusion (equation (9)). This is in contrast to the

widely applied single voxel approaches of the tofts-ketymodel (TKM) and extended tofts-ketymodel (ETKM)

which describe tissue in terms of a vascular and an extravascular compartment. To probe perfusion the blood

flow should be consideredwhich extends the ETKM to the standard two-compartment exchangemodel

(Sourbron andBuckley 2012). To assess permeability, the TKMandETKMmainly utilize theKtrans parameter

which characterizes the transfer of contrast agent into the extravascular space from the vascular space. An over

estimation of parameters from theTKMhas been reported (Sinno et al 2021) due to the effect of inter-voxel

exchangewhich is neglected.While the result in this study has shown thatmeasurement of perfusion comeswith

significant numerical error, the use of spatiotemporalmodeling does remove the equally substantial error that

comes from assuming a single upstream feeding artery (Calamante et al 2006). It is currently unknownwhether,

and towhat extent, this offsets the numerical reconstruction errors observed in the spatiotemporalmodel.

This study is obviously limited by the use a of a one-dimensional toymodel. In reality, fully unconstrained

spatiotemporalmodeling forDCE is only relevant when applied to 3Ddata, as through-plane exchange of

indicator cannot be excluded in realistic scenarios. However, application ofmulti-compartmentalmodeling in

3D comeswith significant computational challenges that are currently largely unresolved. Standard gradient-

descent type optimization as performed in this study is unlikely to be practically feasible in 3D, though this has

not yet been fully explored. The use of 1Dmodels allows for aflexible exploration of fundamental issues of

parameter identifiability, but there is no guarantee that the findings translate to the 3D scenario. Indeed, 3Ddata

are significantlymore entangled due to the spatial connections in the other dimensions, and thismaywell help to

Figure 7.Distribution of each parameter error for the two-compartment system relative to the absolutemean parameter valuewithin
each system. The distribution is shown across all 3 cases for (a) all noise realizations at each SNR; and (b) undersampling rates.
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resolved any degeneracies found in 1D. Future studies should therefore focus in the first place on developing

computationalmethods that are able to solve spatiotemporal two-compartmentmodels in reasonable

computation times, before the issue of parameter identifiability can be investigated in-silico in 3Ddata. Recent

developments in deep learning, specifically the use of physics informed neural networks (PINNS) and their

successful application in related problems, has offered some hope that a solutionmay be technically feasible.

5. Conclusions

This study provides proof of concept that one-compartmental blood flowmodels are fully identifiable and do

not require a separatemeasurement of the AIF. Arterial properties of two-compartmental perfusionmodels

have comparable accuracy but perfusion fields and venous flows cannot bemeasured reliably. Future studies

should focus on exploring the use of physical constraints, improved optimization and on development of

computational solutions for the 3D case.
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