487 research outputs found

    The use of indigenous knowledge in development: problems and challenges

    Get PDF
    The use of indigenous knowledge has been seen by many as an alternative way of promoting development in poor rural communities in many parts of the world. By reviewing much of the recent work on indigenous knowledge, the paper suggests that a number of problems and tensions has resulted in indigenous knowledge not being as useful as hoped for or supposed. These include problems emanating from a focus on the (arte)factual; binary tensions between western science and indigenous knowledge systems; the problem of differentiation and power relations; the romanticization of indigenous knowledge; and the all too frequent decontextualization of indigenous knowledge

    Довіра до поліції, як основний принцип взаємодії з громадськістю

    Get PDF
    Баранова, Ц. С. Довіра до поліції, як основний принцип взаємодії з громадськістю / Баранова Ц. С., Шака М. В. // Взаємодія поліції з населенням на засадах партнерства: сучасний стан та перспективи розвитку: матеріали наук.-практ. круглий стіл (м. Одеса, 25 листоп. 2021 р.) / МВС України, Одес. держ. ун-т внутр. справ, Каф. адмін. діял. поліції. - Одеса: ОДУВС, 2021. - С. 20-22.Зазначено, що довіра є однією із фундаментальних основ партнерства, налагодження якого сприяє, з одного боку, підвищенню ефективності виконання працівниками поліції своїх обов’язків із охорони громадського порядку, а з другого – відчуттю захищеності громадян.It is noted that trust is one of the fundamental foundations of partnership, the establishment of which contributes, on the one hand, to increasing the efficiency of the police officers' performance of their duties to protect public order, and on the other hand, to the feeling of security of citizens.Отмечено, что доверие является одной из фундаментальных основ партнерства, налаживание которого способствует, с одной стороны, повышению эффективности выполнения работниками полиции своих обязанностей по охране общественного порядка, а с другой – ощущению защищенности граждан

    Comparison of dynamical decoupling protocols for a nitrogen-vacancy center in diamond

    Full text link
    We perform a detailed theoretical-experimental study of the dynamical decoupling (DD) of the nitrogen-vacancy (NV) center in diamond. We investigate the DD sequences applied to suppress the dephasing of the electron spin of the NV center induced by the coupling to a spin bath composed of the substitutional nitrogen atoms. The decoupling efficiency of various DD schemes is studied, including both periodic and periodic pulse sequences. For ideal control pulses, we find that the DD protocols with the Carr-Purcell-Meiboom-Gill (CPMG) timing of the pulses provides best performance. We show that, as the number of control pulses increases, the decoupling fidelity scaling differs qualitatively from the predictions of the Magnus expansion, and explain the origin of this difference. In particular, more advanced symmetrized or concatenated protocols do not improve the DD performance. Next, we investigate the impact of the systematic instrumental pulse errors in different periodic and aperiodic pulse sequences. The DD protocols with the single-axis control do not preserve all spin components in the presence of the pulse errors, and the two-axis control is needed. We demonstrate that the two-axis control sequence with the CPMG timing is very robust with respect to the pulse errors. The impact of the pulse errors can be diminished further by symmetrizing this protocol. For all protocols studied here, we present a detailed account of the pulse error parameters which make strongest impact on the DD performance. In conclusion, we give specific recommendations about choosing the decoupling protocol for the system under investigation.Comment: 16 pages, 11 figure

    Bang-Bang control of a qubit coupled to a quantum critical spin bath

    Full text link
    We analytically and numerically study the effects of pulsed control on the decoherence of a qubit coupled to a quantum spin bath. When the environment is critical, decoherence is faster and we show that the control is relatively more effective. Two coupling models are investigated, namely a qubit coupled to a bath via a single link and a spin star model, yielding results that are similar and consistent.Comment: 10 pages, 4 figures, replaced with published versio

    High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins

    Get PDF
    Four novel 5D (HACA(N)CONH, HNCOCACB, (HACA)CON(CA)CONH, (H)NCO(NCA)CONH), and one 6D ((H)NCO(N)CACONH) NMR pulse sequences are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in indirectly detected dimensions. The experiments facilitate resonance assignment of intrinsically disordered proteins. The novel pulse sequences were successfully tested using δ subunit (20 kDa) of Bacillus subtilis RNA polymerase that has an 81-amino acid disordered part containing various repetitive sequences

    Targeting Melanoma Metastasis and Immunosuppression with a New Mode of Melanoma Inhibitory Activity (MIA) Protein Inhibition

    Get PDF
    Melanoma is the most aggressive form of skin cancer, with fast progression and early dissemination mediated by the melanoma inhibitory activity (MIA) protein. Here, we discovered that dimerization of MIA is required for functional activity through mutagenesis of MIA which showed the correlation between dimerization and functional activity. We subsequently identified the dodecapeptide AR71, which prevents MIA dimerization and thereby acts as a MIA inhibitor. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy demonstrated the binding of AR71 to the MIA dimerization domain, in agreement with in vitro and in vivo data revealing reduced cell migration, reduced formation of metastases and increased immune response after AR71 treatment. We believe AR71 is a lead structure for MIA inhibitors. More generally, inhibiting MIA dimerization is a novel therapeutic concept in melanoma therapy

    13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides

    Get PDF
    We present here a set of 13C-direct detected NMR experiments to facilitate the resonance assignment of RNA oligonucleotides. Three experiments have been developed: (1) the (H)CC-TOCSY-experiment utilizing a virtual decoupling scheme to assign the intraresidual ribose 13C-spins, (2) the (H)CPC-experiment that correlates each phosphorus with the C4′ nuclei of adjacent nucleotides via J(C,P) couplings and (3) the (H)CPC-CCH-TOCSY-experiment that correlates the phosphorus nuclei with the respective C1′,H1′ ribose signals. The experiments were applied to two RNA hairpin structures. The current set of 13C-direct detected experiments allows direct and unambiguous assignment of the majority of the hetero nuclei and the identification of the individual ribose moieties following their sequential assignment. Thus, 13C-direct detected NMR methods constitute useful complements to the conventional 1H-detected approach for the resonance assignment of oligonucleotides that is often hindered by the limited chemical shift dispersion. The developed methods can also be applied to large deuterated RNAs

    The S4–S5 Linker Acts as a Signal Integrator for hERG K+ Channel Activation and Deactivation Gating

    Get PDF
    Human ether-à-go-go-related gene (hERG) K+ channels have unusual gating kinetics. Characterised by slow activation/deactivation but rapid inactivation/recovery from inactivation, the unique gating kinetics underlie the central role hERG channels play in cardiac repolarisation. The slow activation and deactivation kinetics are regulated in part by the S4–S5 linker, which couples movement of the voltage sensor domain to opening of the activation gate at the distal end of the inner helix of the pore domain. It has also been suggested that cytosolic domains may interact with the S4–S5 linker to regulate activation and deactivation kinetics. Here, we show that the solution structure of a peptide corresponding to the S4–S5 linker of hERG contains an amphipathic helix. The effects of mutations at the majority of residues in the S4–S5 linker of hERG were consistent with the previously identified role in coupling voltage sensor movement to the activation gate. However, mutations to Ser543, Tyr545, Gly546 and Ala548 had more complex phenotypes indicating that these residues are involved in additional interactions. We propose a model in which the S4–S5 linker, in addition to coupling VSD movement to the activation gate, also contributes to interactions that stabilise the closed state and a separate set of interactions that stabilise the open state. The S4–S5 linker therefore acts as a signal integrator and plays a crucial role in the slow deactivation kinetics of the channel
    corecore