18 research outputs found

    Hydroxyproline-rich Glycoproteins and Plant Defence

    No full text
    Abstract The distinguished plant cell wall component referred to as hydroxyproline-rich glycoproteins (HRGPs) exists in two forms: soluble in the symplast and insoluble in the apoplast. Insolubilization of HRGPs in cell walls through oxidative cross-linking which is elicited by stress represents a characteristic feature exhibited by two classes of HRGPs, namely, extensins and proline/HRGPs. Cross-linking of these HRGPs is an important process to strengthen the cell walls that contributes to plant defence reactions. In this review, the available information on these proteins is analysed with respect to their roles in host-pathosystems and the various techniques applied for their characterization. Future prospects on strengthening of cell walls through gene regulation and transgenic approaches are also addressed

    Isolation and characterisation of a NBS-LRR resistance gene analogue from pearl millet

    No full text
    Plant resistance (R) proteins belonging to nucleotide-binding site-leucine-rich repeat (NBS-LRR) family are mainly involved in recognition of effectors secreted by pathogens. Pearl millet [Pennisetum glaucum (L.) R.Br] is one of the most drought tolerant cereals, staple food crop of the semi-arid tropics but is highly susceptible to the downy mildew disease caused by oomycetous Sclerospora graminicola (Sacc) schroet. Earlier studies have identified several resistance gene analogues (RGAs) in pearl millet which may be involved in resistance against downy mildew. Of these, a clone RGPM213 was shown to have more than 60% identity with R-proteins coding for NBS-LRR-like protein kinase. The exact nature and function of the R-protein encoded by this gene was not known. In the present study, the cDNA of RGPM213 encompassing NBS-LRR region was inserted into an expression vector pRSET-A and transformed into BL21 E.coli cells. The expressed recombinant fusion protein with a His tag was purified using nickel affinity purification and it had a molecular weight of 35 kDa on SDS-PAGE. Immunoaffinity purification using antibodies raised against this recombinant R-protein identified two proteins of molecular weights 55 kDa and 66 kDa from pearl millet seedling extracts. Peptide mass fingerprinting of these proteins followed by homology search in database revealed similarity of the 55 kDa protein with a protein kinase from Brassica oleracia containing serine/ threonine kinase domain

    Spore cell wall components ofAspergillus niger elicit downy mildew disease resistance in pearl millet

    No full text
    Elicitors derived from the cell wall of fungi are shown to be active in eliciting resistance in plants against a wide range of pathogens. In the present study carbohydrate components from the autoclaved spore cell wall ofAspergillus niger were prepared as aqueous suspensions and tested for defense response in pearl millet (Pennisetum glaucum (L.) R.Br.) against the oomycetous downy mildew pathogenSclerospora graminicola (Sacc.) Schroet. The aqueous suspension derived from the spore cell wall ofA. niger was used as a seed soak treatment at concentrations of 0.25, 0.5, 1.0, 1.5 and 2.0 mg ml−1 for time intervals of 3, 6, 9 and 12 h. The concentration of 0.5 mg ml−1 for a 6 h soaking period offered 94% seed germination and seedling vigor index increased to 1526. The seed germination and the seedling vigor were significantly higher than the untreated check. Spore cell wall suspension as seed treatment at a concentration of 0.5 mg ml−1 required a 3-day time interval to provide 67% protection against downy mildew. Histological and biochemical studies were conducted to elucidate the mechanism of defense response in treated seedlings uponS. graminicola infection. Resistance host response was detected in the form of lignin and callose deposition in the epidermal cell wall of pearl millet seedlings, which is the site ofS. graminicola infection. A time course study showed rapid and localized deposition of lignin and callose in epidermal cell wall of carbohydrate components-treated pearl millet seedling coleoptiles. Increased levels of the defense-related enzyme peroxidase were detected in the treated seedlings. Peroxidase activity in elicitor-treated samples reached a peak at 8 h post-infection, which was 45% more than in their respective uninoculated control. Characterization of peroxidase isoforms by isoelectric focusing revealed 16 different isoforms, of which pI 6.8, 7.2 and 8.7 increased in elicitor-treated samples uponS. graminicola infection

    Purification and characterization of proline/hydroxyproline-rich glycoprotein from pearl millet coleoptiles infected with downy mildew pathogen Sclerospora graminicola

    No full text
    Hydroxyproline-rich glycoproteins (HRGPs) are important plant cell wall structural components, which are also involved in response to pathogen attack. In pearl millet, deposition and cross-linking of HRGPs in plant cell walls was shown to contribute to the formation of resistance barriers against the phytopathogenic oomycete Sclerospora graminicola. In the present study, the purification and characterization of HRGPs that accumulated in coleoptiles of pearl millet seedlings in response to S. graminicola inoculation has been carried out. Periodic acid Schiff’s staining revealed that the purified protein was a glycoprotein. The protein to carbohydrate ratio was determined to be 95.5:4.5 (w/w). Proline amounted for 20mol of the total amino acids as indicated by amino acid composition analysis. The isolated protein had a pI of 9.8 and was shown to be composed of subunits of 27, 17, and 14kDa. Cross reactivity with the monoclonal antibody MAC 265 and the presence of the signature amino acid sequence, PVYK, strongly suggested to classify the purified glycoprotein as a member of the P/HRGPs class. In the presence of horseradish peroxidase and H2O2 the purified glycoprotein served as a substrate for oxidative cross-linking processes

    Role of hydroxyproline-rich glycoproteins in resistance of pearl millet against downy mildew pathogen Sclerospora graminicola

    No full text
    Hydroxyproline-rich glycoproteins (HRGPs) are important plant cell wall components involved in plant defense response to pathogen attack. In the present study, a resistant pearl millet (Pennisetum glaucum) cultivar, IP18292, was compared with a susceptible cultivar, 7042S, to investigate the contribution of HRGPs in the successful defense against the phytopathogenic oomycete S. graminicola. Northern hybridization using MeHRGP cDNA, a heterologous probe from cassava, indicated steady accumulation of HRGP transcripts, from 2 h.p.i. onwards with a maximum at 6 h.p.i., in the resistant cultivar. This is followed by HRGPs accumulation at about 8 h.p.i. as revealed by Western-blot analysis. Immunocytochemical localization by tissue printing and confocal immunofluorescence microscopy indicated cell walls of parenchymatic cells and the vascular tissue of coleoptile as sites of HRGP deposition. In vitro studies in the presence of horseradish peroxidase and H2O2 showed cross-linking of pearl millet HRGPs, which occurred parallel to isodityrosine accumulation. Inducible high isodityrosine content was also observed in vivo in the resistant cultivar. Here, H2O2 was found to accumulate as twin burst at 1 and 6 h.p.i., whereas in the susceptible cultivar only an early single peak was detectable. Moreover, the amount of hydroxyproline in HRGPs was about twice as high in the resistant as in the susceptible cultivar. These results suggest that cell wall strengthening in S. graminicola-infected resistant pearl millet is brought about by a combination of polypeptide cross-linking of isodityrosine as well as by the high content of hydroxyproline in HRGPs, and H2O2, in contrast to the susceptible plant

    Hydroxyproline-rich glycoproteins accumulate in pearl millet after seed treatment with elicitors of defense responses against Sclerospora graminicola

    Get PDF
    The accumulation of hydroxyproline-rich glycoproteins (HRGPs) was investigated after induction of resistance in pearl millet against downy mildew caused by Sclerospora graminicola. Treatment of susceptible pearl millet seeds with various biotic and abiotic elicitors resulted in increased HRGP content in the cell walls of coleoptiles at 9 h after inoculation. Similar results with increased accumulation at 4–6 h after inoculation were obtained in suspension cells of pearl millet. Maximum HRGP accumulation was observed in seedlings raised from susceptible seeds treated with chitosan and Pseudomonas fluorescens. Western blot analysis with MAC 265 (a rat monoclonal antibody raised against pea HRGP) identified three proteins of 27, 17 and 14 kDa in resistant cultivars. The absence of the 14 kDa HRGP was observed in susceptible cultivars as reported earlier. The induced accumulation of the 14 kDa HRGP upon elicitor treatments was observed in the present study. Peroxidase and hydrogen peroxide, essential components for HRGP cross-linking, were also increased in samples treated with these elicitors. A tissue specific increase in HRGP at the regions around vascular bundles was observed upon chitosan treatment. The results presented will have a presumed importance in identifying the susceptible pearl millet varieties and improving those using elicitors of defense for field applications.

    Characterization of a hydroxyproline-rich glycoprotein in pearl millet and its differential expression in response to the downy mildew pathogen Sclerospora graminicola

    Get PDF
    A monoclonal antibody, JIM 20, derived against an extensin type of hydroxyproline-rich glycoprotein (HRGP) from pea, showed high affinity for HRGP in pearl millet [Pennisetum glaucum (L.) R. Br.]. Electrophoretic separation of Tris–SDS extracted proteins from suspension cells of pearl millet revealed a range of PM-HRGP polypeptides having a glycan epitope, which reacted with JIM 20. A high molecular mass band, probably an HRGP aggregate or polymer, and a few low molecular mass polypeptides were recognized by JIM 20 during Western blot analysis. Treatment of pearl millet suspension cells with hydrogen peroxide in the presence of an endogenous peroxidase resulted in insolubilization of HRGP polypeptides with molecular weights between 45 and 33 kDa. To investigate the gene coding for an extensin type of HRGP, a fosmid-based genomic library of pearl millet having a fourfold genome coverage was constructed. A partial sequence of 378 bp of an HRGP gene was obtained by PCR amplification of pearl millet DNA with a primer pair designed from the conserved regions of monocotyledon extensin type of HRGPs. Screening the genomic library using the homologous probe developed from the 378-bp PCR product resulted in the isolation of five fosmid clones. Restriction mapping of these fosmids resulted in an 11.8-kb region around an HRGP gene in pearl millet. The newly characterized gene, PM-HRGP, had all the characteristic features of a monocotyledon extensin type of HRGP. An intron at the 30 untranslated region of the gene was identified by cDNA cloning. Differential expression of the PM-HRGP gene was observed during compatible and incompatible interactions of pearl millet with the downy mildew pathogen Sclerospora graminicola (Sacc) Schroet. Induced expression of the gene was observed only in case of an incompatible interaction.

    Molecular cloning of a coiled-coil-nucleotide-binding-site-leucine-rich repeat gene from pearl millet and its expression pattern in response to the downy mildew pathogen

    Get PDF
    Downy mildew caused by Sclerospora graminicola is a devastating disease of pearl millet. Based on candidate gene approach, a set of 22 resistance gene analogues were identified. The clone RGPM 301 (AY117410) containing a partial sequence shared 83 % similarity to rice R-proteins. A full-length R-gene RGA RGPM 301 of 3552 bp with 2979 bp open reading frame encoding 992 amino acids was isolated by the degenerate primers and rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR) approach. It had a molecular mass of 113.96 kDa and isoelectric point (pI) of 8.71. The sequence alignment and phylogenetic analysis grouped it to a non-TIR NBS LRR group. The quantitative real-time PCR (qRT-PCR) analysis revealed higher accumulation of the transcripts following inoculation with S. graminicola in the resistant cultivar (IP18296) compared to susceptible cultivar (7042S). Further, significant induction in the transcript levels were observed when treated with abiotic elicitor β-aminobutyric acid (BABA) and biotic elicitor Pseudomonas fluorescens. Exogenous application of phytohormones jasmonic acid or salicylic acid also up-regulated the expression levels of RGA RGPM 301. The treatment of cultivar IP18296 with mitogen-activated protein kinase (MPK) inhibitors (PD98059 and U0126) suppressed the levels of RGA RGPM 301. A 3.5 kb RGA RGPM 301 which is a non-TIR NBS-LRR protein was isolated from pearl millet and its up-regulation during downy mildew interaction was demonstrated by qRT-PCR. These studies indicate a role for this RGA in pearl millet downy mildew interaction

    Induction of resistance against downy mildew pathogen in pearl millet by a synthetic jasmonate analogon

    No full text
    The synthetic 1-oxo-indanoyl-l-isoleucine methyl ester (Ind-Ile-Me) represents a highly active mimic of octadecanoic phytohormones, which are involved in plant defenses against pathogens and pests. Seed treatments and foliar spray with Ind-Ile-Me were tested for induced resistance against downy mildew disease caused by the phytopathogenic oomycete Sclerospora graminicola in pearl millet (Pennisetum glaucum) under greenhouse and field conditions. Under greenhouse conditions, a 50 protection level was achieved after seed treatment. Seed treatment in combination with foliar spray resulted in 60 protection. The induction of resistance was correlated with the enhanced activities of defense-related proteins such as phenylalanine-ammonia-lyase, peroxidase, and enhanced level of hydroxyproline-rich glycoproteins. Under field conditions, a maximum protection of 62 was recorded upon seed treatment along with foliar spray. Hence, it infers that Ind-Ile-Me can be used as a valuable protection compound at least in downy mildew disease management
    corecore