8 research outputs found

    Modelling resource requirements and physician staffing to provide virtual urgent medical care for residents of long-term care homes: a cross-sectional study

    No full text
    Background: The coronavirus disease 2019 (COVID-19) outbreak increases the importance of strategies to enhance urgent medical care delivery in long-term care (LTC) facilities that could potentially reduce transfers to emergency departments. The study objective was to model resource requirements to deliver virtual urgent medical care in LTC facilities. Methods: We used data from all general medicine inpatient admissions at 7 hospitals in the Greater Toronto Area, Ontario, Canada, over a 7.5-year period (Apr. 1, 2010, to Oct. 31, 2017) to estimate historical patterns of hospital resource use by LTC residents. We estimated an upper bound of potentially avoidable transfers by combining data on short admissions (≤ 72 h) with historical data on the proportion of transfers from LTC facilities for which patients were discharged from the emergency department without admission. Regression models were used to extrapolate future resource requirements, and queuing models were used to estimate physician staffing requirements to perform virtual assessments. Results: There were 235 375 admissions to general medicine wards, and residents of LTC facilities (age 16 yr or older) accounted for 9.3% (n = 21 948) of these admissions. Among the admissions of residents of LTC facilities, short admissions constituted 24.1% (n = 5297), and for 99.8% (n = 5284) of these admissions, the patient received laboratory testing, for 86.9% (n = 4604) the patient received plain radiography, for 41.5% (n = 2197) the patient received computed tomography and for 81.2% (n = 4300) the patient received intravenous medications. If all patients who have short admissions and are transferred from the emergency department were diverted to outpatient care, the average weekly demand for outpatient imaging per hospital would be 2.6 ultrasounds, 11.9 computed tomographic scans and 23.9 radiographs per week. The average daily volume of urgent medical virtual assessments would range from 2.0 to 5.8 per hospital. A single centralized virtual assessment centre staffed by 2 or 3 physicians would provide services similar in efficiency (measured by waiting time for physician assessment) to 7 separate centres staffed by 1 physician each. Interpretation: The provision of acute medical care to LTC residents at their facility would probably require rapid access to outpatient diagnostic imaging, within-facility access to laboratory services and intravenous medication and virtual consultations with physicians. The results of this study can inform efforts to deliver urgent medical care in LTC facilities in light of a potential surge in COVID-19 casesFahad Razak is supported by an award from the Mak Pak Chiu and Mak-Soo Lai Hing Chair in General Internal Medicine, University of Toronto

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore