8 research outputs found

    Photoreceptor responses to light in the pathogenesis of diabetic retinopathy

    Get PDF
    Vision loss, among the most feared complications of diabetes, is primarily caused by diabetic retinopathy, a disease that manifests in well-recognized, characteristic microvascular lesions. The reasons for retinal susceptibility to damage in diabetes are unclear, especially considering that microvascular networks are found in all tissues. However, the unique metabolic demands of retinal neurons could account for their vulnerability in diabetes. Photoreceptors are the first neurons in the visual circuit and are also the most energy-demanding cells of the retina. Here, we review experimental and clinical evidence linking photoreceptors to the development of diabetic retinopathy. We then describe the influence of retinal illumination on photoreceptor metabolism, effects of light modulation on the severity of diabetic retinopathy, and recent clinical trials testing the treatment of diabetic retinopathy with interventions that impact photoreceptor metabolism. Finally, we introduce several possible mechanisms that could link photoreceptor responses to light and the development of retinal vascular disease in diabetes. Collectively, these concepts form the basis for a growing body of investigative efforts aimed at developing novel pharmacologic and nonpharmacologic tools that target photoreceptor physiology to treat a very common cause of blindness across the world

    Chromatin environment and cellular context specify compensatory activity of paralogous MEF2 transcription factors

    Get PDF
    Compensation among paralogous transcription factors (TFs) confers genetic robustness of cellular processes, but how TFs dynamically respond to paralog depletion on a genome-wide scale in vivo remains incompletely understood. Using single and double conditional knockout of myocyte enhancer factor 2 (MEF2) family TFs in granule neurons of the mouse cerebellum, we find that MEF2A and MEF2D play functionally redundant roles in cerebellar-dependent motor learning. Although both TFs are highly expressed in granule neurons, transcriptomic analyses show MEF2D is the predominant genomic regulator of gene expression in vivo. Strikingly, genome-wide occupancy analyses reveal upon depletion of MEF2D, MEF2A occupancy robustly increases at a subset of sites normally bound to MEF2D. Importantly, sites experiencing compensatory MEF2A occupancy are concentrated within open chromatin and undergo functional compensation for genomic activation and gene expression. Finally, motor activity induces a switch from non-compensatory to compensatory MEF2-dependent gene regulation. These studies uncover genome-wide functional interdependency between paralogous TFs in the brain

    MicroRNA in Enteric Nervous System Development

    No full text
    Mentor: Robert O. Heuckeroth From the Washington University Undergraduate Research Digest: WUURD, Volume 7, Issue 2, Spring 2012. Published by the Office of Undergraduate Research, Joy Zalis Kiefer Director of Undergraduate Research and Assistant Dean in the College of Arts & Sciences; Kristin Sobotka, Editor

    Unilateral Optic Disc Edema in GFAP Autoantibody-Positive Astrocytopathy

    No full text

    Unilateral Optic Disc Edema in GFAP Autoantibody-Positive Astrocytopathy

    No full text
    Glial fibrillary acidic protein (GFAP) autoantibody-positive astrocytopathy is a recently described rare autoimmune disorder that predominantly presents as a meningoencephalitis characterized by hallmark linear perivascular radial enhancement on brain MRI (1). Bilateral optic disc edema manifests in nearly one-third of patients in cohort studies for this disorder (2-3). Here, we introduce a case of unilateral optic disc edema in a patient with autoimmune GFAP astrocytopathy

    The transcriptional regulator SnoN promotes the proliferation of cerebellar granule neuron precursors in the postnatal mouse brain

    Get PDF
    Control of neuronal precursor cell proliferation is essential for normal brain development, and deregulation of this fundamental developmental event contributes to brain diseases. Typically, neuronal precursor cell proliferation extends over long periods of time during brain development. However, how neuronal precursor proliferation is regulated in a temporally specific manner remains to be elucidated. Here, we report that conditional KO of the transcriptional regulator SnoN in cerebellar granule neuron precursors robustly inhibits the proliferation of these cells and promotes their cell cycle exit at later stages of cerebellar development in the postnatal male and female mouse brain. In laser capture microdissection followed by RNA-Seq, designed to profile gene expression specifically in the external granule layer of the cerebellum, we find that SnoN promotes the expression of cell proliferation genes and concomitantly represses differentiation genes in granule neuron precursor
    corecore