12 research outputs found

    The decline in paediatric malaria admissions on the coast of Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is only limited information on the health impact of expanded coverage of malaria control and preventative strategies in Africa.</p> <p>Methods</p> <p>Paediatric admission data were assembled over 8.25 years from three District Hospitals; Kilifi, Msambweni and Malindi, situated along the Kenyan Coast. Trends in monthly malaria admissions between January 1999 and March 2007 were analysed using several time-series models that adjusted for monthly non-malaria admission rates and the seasonality and trends in rainfall.</p> <p>Results</p> <p>Since January 1999 paediatric malaria admissions have significantly declined at all hospitals. This trend was observed against a background of rising or constant non-malaria admissions and unaffected by long-term rainfall throughout the surveillance period. By March 2007 the estimated proportional decline in malaria cases was 63% in Kilifi, 53% in Kwale and 28% in Malindi. Time-series models strongly suggest that the observed decline in malaria admissions was a result of malaria-specific control efforts in the hospital catchment areas.</p> <p>Conclusion</p> <p>This study provides evidence of a changing disease burden on the Kenyan coast and that the most parsimonious explanation is an expansion in the coverage of interventions such as the use of insecticide-treated nets and the availability of anti-malarial medicines. While specific attribution to intervention coverage cannot be computed what is clear is that this area of Kenya is experiencing a malaria epidemiological transition.</p

    Population effect of 10-valent pneumococcal conjugate vaccine on nasopharyngeal carriage of Streptococcus pneumoniae and non-typeable Haemophilus influenzae in Kilifi, Kenya: findings from cross-sectional carriage studies.

    Get PDF
    BACKGROUND: The effect of 7-valent pneumococcal conjugate vaccine (PCV) in developed countries was enhanced by indirect protection of unvaccinated individuals, mediated by reduced nasopharyngeal carriage of vaccine-serotype pneumococci. The potential indirect protection of 10-valent PCV (PCV10) in a developing country setting is unknown. We sought to estimate the effectiveness of introduction of PCV10 in Kenya against carriage of vaccine serotypes and its effect on other bacteria. METHODS: PCV10 was introduced into the infant vaccination programme in Kenya in January, 2011, accompanied by a catch-up campaign in Kilifi County for children aged younger than 5 years. We did annual cross-sectional carriage studies among an age-stratified, random population sample in the 2 years before and 2 years after PCV10 introduction. A nasopharyngeal rayon swab specimen was collected from each participant and was processed in accordance with WHO recommendations. Prevalence ratios of carriage before and after introduction of PCV10 were calculated by log-binomial regression. FINDINGS: About 500 individuals were enrolled each year (total n=2031). Among children younger than 5 years, the baseline (2009-10) carriage prevalence was 34% for vaccine-serotype Streptococcus pneumoniae, 41% for non-vaccine-serotype Streptococcus pneumoniae, and 54% for non-typeable Haemophilus influenzae. After PCV10 introduction (2011-12), these percentages were 13%, 57%, and 40%, respectively. Adjusted prevalence ratios were 0·36 (95% CI 0·26-0·51), 1·37 (1·13-1·65), and 0·62 (0·52-0·75), respectively. Among individuals aged 5 years or older, the adjusted prevalence ratios for vaccine-serotype and non-vaccine-serotype S pneumoniae carriage were 0·34 (95% CI 0·18-0·62) and 1·13 (0·92-1·38), respectively. There was no change in prevalence ratio for Staphylococcus aureus (adjusted prevalence ratio for those <5 years old 1·02, 95% CI 0·52-1·99, and for those ≥5 years old 0·90, 0·60-1·35). INTERPRETATION: After programmatic use of PCV10 in Kilifi, carriage of vaccine serotypes was reduced by two-thirds both in children younger than 5 years and in older individuals. These findings suggest that PCV10 introduction in Africa will have substantial indirect effects on invasive pneumococcal disease. FUNDING: GAVI Alliance and Wellcome Trust

    Admissions by month for the period January 1999 to March 2007 at three sites on the Kenyan coast

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "The decline in paediatric malaria admissions on the coast of Kenya"</p><p>http://www.malariajournal.com/content/6/1/151</p><p>Malaria Journal 2007;6():151-151.</p><p>Published online 15 Nov 2007</p><p>PMCID:PMC2194691.</p><p></p> The top row is Kilifi, the middle row Kwale and the bottom Malindi. The graphs show malaria admissions (left column) and non-malaria admissions (right column) as dashed lines. The yellow solid line is a 13-point moving average applied to filter seasonal variation and highlight the long-term movements in the data. The two solid tone lines illustrate the change in admissions adjusted for seasonality (light grey) and seasonality, rainfall and non-malaria admissions (black). The intercept was chosen (from the potential 11) based on the maximal correlation with the 13-point m.a

    Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics-3

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics"</p><p>http://www.biomedcentral.com/1741-7015/5/37</p><p>BMC Medicine 2007;5():37-37.</p><p>Published online 11 Dec 2007</p><p>PMCID:PMC2225405.</p><p></p>. Plots are annual time series showing mean number of all-cause outpatient cases per facility per month at government health facilities in six provinces during 1996–2004. Unadjusted means were calculated directly from incomplete HMIS data. Adjusted means were based on a geostatistically-completed version of this dataset. Vertical bars on the adjusted mean plots show 95% confidence intervals

    Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics-0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics"</p><p>http://www.biomedcentral.com/1741-7015/5/37</p><p>BMC Medicine 2007;5():37-37.</p><p>Published online 11 Dec 2007</p><p>PMCID:PMC2225405.</p><p></p>. Plots are annual time series showing mean number of all-cause outpatient cases per facility per month at government health facilities in six provinces during 1996–2004. Unadjusted means were calculated directly from incomplete HMIS data. Adjusted means were based on a geostatistically-completed version of this dataset. Vertical bars on the adjusted mean plots show 95% confidence intervals

    Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics-2

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics"</p><p>http://www.biomedcentral.com/1741-7015/5/37</p><p>BMC Medicine 2007;5():37-37.</p><p>Published online 11 Dec 2007</p><p>PMCID:PMC2225405.</p><p></p>eans were calculated directly from incomplete HMIS data. Adjusted means were based on a geostatistically-completed version of this dataset. Vertical bars on the adjusted annual mean plots show 95% confidence intervals

    Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics-1

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics"</p><p>http://www.biomedcentral.com/1741-7015/5/37</p><p>BMC Medicine 2007;5():37-37.</p><p>Published online 11 Dec 2007</p><p>PMCID:PMC2225405.</p><p></p>onth at government health facilities in Kenya during 1996–2004. Unadjusted means were calculated directly from incomplete HMIS data. Adjusted means were based on a geostatistically-completed version of this dataset. Vertical bars on the adjusted annual mean plot show 95% confidence intervals. The provenance and sensitivity of the HMIS data were affirmed by the observations of two marked aberrations in the monthly data: December 1997, a month of industrial action nationwide by nurses, and July 2004 when large publicity surrounded the reduction of user fees at government clinics

    Population effect of 10-valent pneumococcal conjugate vaccine on nasopharyngeal carriage of Streptococcus pneumoniae and non-typeable Haemophilus influenzae in Kilifi, Kenya: findings from cross-sectional carriage studies

    No full text
    Background: The effect of 7-valent pneumococcal conjugate vaccine (PCV) in developed countries was enhanced by indirect protection of unvaccinated individuals, mediated by reduced nasopharyngeal carriage of vaccine-serotype pneumococci. The potential indirect protection of 10-valent PCV (PCV10) in a developing country setting is unknown. We sought to estimate the effectiveness of introduction of PCV10 in Kenya against carriage of vaccine serotypes and its effect on other bacteria. Methods: PCV10 was introduced into the infant vaccination programme in Kenya in January, 2011, accompanied by a catch-up campaign in Kilifi County for children aged younger than 5 years. We did annual cross-sectional carriage studies among an age-stratified, random population sample in the 2 years before and 2 years after PCV10 introduction. A nasopharyngeal rayon swab specimen was collected from each participant and was processed in accordance with WHO recommendations. Prevalence ratios of carriage before and after introduction of PCV10 were calculated by log-binomial regression. Findings: About 500 individuals were enrolled each year (total n=2031). Among children younger than 5 years, the baseline (2009–10) carriage prevalence was 34% for vaccine-serotype Streptococcus pneumoniae, 41% for non-vaccine-serotype Streptococcus pneumoniae, and 54% for non-typeable Haemophilus influenzae. After PCV10 introduction (2011–12), these percentages were 13%, 57%, and 40%, respectively. Adjusted prevalence ratios were 0·36 (95% CI 0·26–0·51), 1·37 (1·13–1·65), and 0·62 (0·52–0·75), respectively. Among individuals aged 5 years or older, the adjusted prevalence ratios for vaccine-serotype and non-vaccine-serotype S pneumoniae carriage were 0·34 (95% CI 0·18–0·62) and 1·13 (0·92–1·38), respectively. There was no change in prevalence ratio for Staphylococcus aureus (adjusted prevalence ratio for those <5 years old 1·02, 95% CI 0·52–1·99, and for those ≥5 years old 0·90, 0·60–1·35). Interpretation: After programmatic use of PCV10 in Kilifi, carriage of vaccine serotypes was reduced by two-thirds both in children younger than 5 years and in older individuals. These findings suggest that PCV10 introduction in Africa will have substantial indirect effects on invasive pneumococcal disease. Funding: GAVI Alliance and Wellcome Trust
    corecore