15 research outputs found

    Adaptive deinterlacing of video sequences using motion data

    Get PDF
    In this work an efficient motion adaptive deinterlacing method with considerable improvement in picture quality is proposed. A temporal deinterlacing method has a high performance in static images while a spatial method has a better performance in dynamic parts. In the proposed deinterlacing method, a motion adaptive interpolator combines the results of a spatial method and a temporal method based on motion activity level of video sequence. A high performance and low complexity algorithm for motion detection is introduced. This algorithm uses five consecutive interlaced video fields for motion detection. It is able to capture a wide range of motions from slow to fast. The algorithm benefits from a hierarchal structure. It starts with detecting motion in large partitions of a given field. Depending on the detected motion activity level for that partition, the motion detection algorithm might recursively be applied to sub-blocks of the original partition. Two different low pass filters are used during the motion detection to increase the algorithm accuracy. The result of motion detection is then used in the proposed motion adaptive interpolator. The performance of the proposed deinterlacing algorithm is compared to previous methods in the literature. Experimenting with several standard video sequences, the method proposed in this work shows excellent results for motion detection and deinterlacing performance

    Procalcitonin as a Prognostic Factor in Patients with COVID-19 in Southwestern Iran

    No full text
    Background: There is increasing evidence supporting a central role of the viral-induced hyper-inflammatory immune response in the pathogenesis of COVID-19. Serum procalcitonin (PCT) is an emerging prognostic marker in coronavirus disease 2019 (COVID-19). The aim of this study was to investigate the relationship between serum procalcitonin and clinical severity and outcomes in patients with coronavirus disease 2019 (COVID-19). Materials and Methods: Hematological and biochemical parameters were evaluated in patients with COVID-19 infection from February to April 2020 at Hajar Hospital in the Shahrekord University of Medical Science, Shahrekord, Iran. Results: The results showed that total lymphocyte counts, albumin, calcium, and creatinine levels were significantly different between the two moderate and severe groups, and the mean of procalcitonin level in COVID-19 patients with severe disease was higher (0.36 ng/mL) compared with the patients with moderate disease, and its level was found to be >5 ng/mL in 14.2% of5 ng/mL in 14.2% of patients in the former group. Conclusion: PCT may be a marker of disease severity in COVID-19 and may contribute to determining the severity of patients infected with SARS-CoV-2. Moreover, serial PCT measurements may be beneficial in predicting the prognosi

    Myelin Water Fraction Is Transiently Reduced after a Single Mild Traumatic Brain Injury--A Prospective Cohort Study in Collegiate Hockey Players.

    No full text
    Impact-related mild traumatic brain injuries (mTBI) are a major public health concern, and remain as one of the most poorly understood injuries in the field of neuroscience. Currently, the diagnosis and management of such injuries are based largely on patient-reported symptoms. An improved understanding of the underlying pathophysiology of mTBI is urgently needed in order to develop better diagnostic and management protocols. Specifically, dynamic post-injury changes to the myelin sheath in the human brain have not been examined, despite 'compromised white matter integrity' often being described as a consequence of mTBI. In this preliminary cohort study, myelin water imaging was used to prospectively evaluate changes in myelin water fraction, derived from the T2 decay signal, in two varsity hockey teams (45 players) over one season of athletic competition. 11 players sustained a concussion during competition, and were scanned at 72 hours, 2 weeks, and 2 months post-injury. Results demonstrated a reduction in myelin water fraction at 2 weeks post-injury in several brain areas relative to preseason scans, including the splenium of the corpus callosum, right posterior thalamic radiation, left superior corona radiata, left superior longitudinal fasciculus, and left posterior limb of the internal capsule. Myelin water fraction recovered to pre-season values by 2 months post-injury. These results may indicate transient myelin disruption following a single mTBI, with subsequent remyelination of affected neurons. Myelin disruption was not apparent in the athletes who did not experience a concussion, despite exposure to repetitive subconcussive trauma over a season of collegiate hockey. These findings may help to explain many of the metabolic and neurological deficits observed clinically following mTBI

    Cross-validation study between the HRRT and the PET component of the SIGNA PET/MRI system with focus on neuroimaging

    No full text
    Background: The Siemens high-resolution research tomograph (HRRT - a dedicated brain PET scanner) is to this day one of the highest resolution PET scanners; thus, it can serve as useful benchmark when evaluating performance of newer scanners. Here, we report results from a cross-validation study between the HRRT and the whole-body GE SIGNA PET/MR focusing on brain imaging. Phantom data were acquired to determine recovery coefficients (RCs), % background variability (%BG), and image voxel noise (%). Cross-validation studies were performed with six healthy volunteers using [11C]DTBZ, [11C]raclopride, and [18F]FDG. Line profiles, regional time-activity curves, regional non-displaceable binding potentials (BPND) for [11C]DTBZ and [11C]raclopride scans, and radioactivity ratios for [18F]FDG scans were calculated and compared between the HRRT and the SIGNA PET/MR. Results: Phantom data showed that the PET/MR images reconstructed with an ordered subset expectation maximization (OSEM) algorithm with time-of-flight (TOF) and TOF + point spread function (PSF) + filter revealed similar RCs for the hot spheres compared to those obtained on the HRRT reconstructed with an ordinary Poisson-OSEM algorithm with PSF and PSF + filter. The PET/MR TOF + PSF reconstruction revealed the highest RCs for all hot spheres. Image voxel noise of the PET/MR system was significantly lower. Line profiles revealed excellent spatial agreement between the two systems. BPND values revealed variability of less than 10% for the [11C]DTBZ scans and 19% for [11C]raclopride (based on one subject only). Mean [18F]FDG ratios to pons showed less than 12% differences. Conclusions: These results demonstrated comparable performances of the two systems in terms of RCs with lower voxel-level noise (%) present in the PET/MR system. Comparison of in vivo human data confirmed the comparability of the two systems. The whole-body GE SIGNA PET/MR system is well suited for high-resolution brain imaging as no significant performance degradation was found compared to that of the reference standard HRRT.Science, Faculty ofOther UBCNon UBCPhysics and Astronomy, Department ofReviewedFacult

    FDG-PET in presymptomatic C9orf72 mutation carriers

    No full text
    Objective: Our aim is to investigate patterns of brain glucose metabolism using fluorodeoxyglucose positron emission tomography (FDG-PET) in presymptomatic carriers of the C9orf72 repeat expansion to better understand the early preclinical stages of frontotemporal dementia (FTD). Methods: Structural MRI and FDG-PET were performed on clinically asymptomatic members of families with FTD caused by the C9orf72 repeat expansion (15 presymptomatic mutation carriers, C9orf72+; 20 non-carriers, C9orf72-). Regional glucose metabolism in cerebral and cerebellar gray matter was compared between groups. Results: The mean age of the C9orf72+ and C9orf72- groups were 45.3 ± 10.6 and 56.0 ± 11.0 years respectively, and the mean age of FTD onset in their families was 56 ± 7 years. Compared to non-carrier controls, the C9orf72+ group exhibited regional hypometabolism, primarily involving the cingulate gyrus, frontal and temporal neocortices (left > right) and bilateral thalami. Conclusions: The C9orf72 repeat expansion is associated with changes in brain glucose metabolism that are demonstrable up to 10 years prior to symptom onset and before changes in gray matter volume become significant. These findings indicate that FDG-PET may be a particularly sensitive and useful method for investigating and monitoring the earliest stages of FTD in individuals with this underlying genetic basis

    Investigation of serotonergic Parkinson's disease-related covariance pattern using [11C]-DASB/PET

    No full text
    We used positron emission tomography imaging with [11C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)- benzonitrile (DASB) and principal component analysis to investigate whether a specific Parkinson's disease (PD)-related spatial covariance pattern could be identified for the serotonergic system. We also explored if non-manifesting leucine-rich repeat kinase 2 (LRRK2) mutation carriers, with normal striatal dopaminergic innervation as measured with [11C]-dihydrotetrabenazine (DTBZ), exhibit a distinct spatial covariance pattern compared to healthy controls and subjects with manifest PD. 15 subjects with sporadic PD, eight subjects with LRRK2 mutation-associated PD, nine LRRK2 non-manifesting mutation carriers, and nine healthy controls participated in the study. The analysis was applied to the DASB non-displaceable binding potential values evaluated in 42 pre-defined regions of interest. PD was found to be associated with a specific spatial covariance pattern, comprising relatively decreased DASB binding in the caudate, putamen and substantia nigra and relatively preserved binding in the hypothalamus and hippocampus; the expression of this pattern in PD subjects was significantly higher than in healthy controls (P < 0.001) and correlated significantly with disease duration (P < 0.01) and with DTBZ binding in the more affected putamen (P < 0.01). The LRRK2 non-manifesting mutation carriers expressed a different pattern, also significantly different from healthy controls (P < 0.001), comprising relatively decreased DASB binding in the pons, pedunculopontine nucleus, thalamus and rostral raphe nucleus, and with relatively preserved binding in the hypothalamus, amygdala, hippocampus and substantia nigra. This pattern was not present in either sporadic or LRRK2 mutation-associated PD subjects. These findings, although obtained with a relatively limited number of subjects, suggest that specific and overall distinct spatial serotonergic patterns may be associated with PD and LRRK2 mutations. Alterations in regions where relative upregulation is observed in both patterns may be indicative of compensatory mechanisms preceding or protecting from disease manifestation

    Brain areas with significantly reduced myelin water fraction.

    No full text
    <p>Areas of significantly reduced myelin water fraction in athletes with concussion at two weeks post-injury, superimposed on a standard brain. These areas include the splenium of the corpus callosum, right posterior thalamic radiation, left superior corona radiata, left superior longitudinal fasciculus, and left posterior limb of the internal capsule.</p

    Relative myelin water fraction change post-injury.

    No full text
    <p>Change scores for myelin water fraction, relative to baseline, plotted against time for each subject with a mild traumatic brain injury in all significant voxels A) across the whole brain; B) in the splenium of the corpus callosum (a structure most commonly affected in mild TBI). Dots represent data points for each injured athlete (mean ± standard error plotted in grey). Note: time zero refers to baseline.</p
    corecore