83 research outputs found
The molecular basis of host specialization in bean pathovars of Pseudomonas syringae
Biotrophic phytopathogens are typically limited to their
adapted host range. In recent decades, investigations have
teased apart the general molecular basis of intraspecific
variation for innate immunity of plants, typically involving
receptor proteins that enable perception of pathogen-associated
molecular patterns or avirulence elicitors from the
pathogen as triggers for defense induction. However, general
consensus concerning evolutionary and molecular factors
that alter host range across closely related phytopathogen
isolates has been more elusive. Here, through genome
comparisons and genetic manipulations, we investigate the
underlying mechanisms that structure host range across
closely related strains of Pseudomonas syringae isolated
from different legume hosts. Although type III secretionindependent
virulence factors are conserved across these
three strains, we find that the presence of two genes encoding
type III effectors (hopC1 and hopM1) and the absence
of another (avrB2) potentially contribute to host range differences
between pathovars glycinea and phaseolicola.
These findings reinforce the idea that a complex genetic
basis underlies host range evolution in plant pathogens.
This complexity is present even in host–microbe interactions
featuring relatively little divergence among both hosts
and their adapted pathogens
Outcome of Suboccipital Decompression with and without Duraplasty in Adults with Chiari I Malformation
Objective: To investigate outcome for Arnold Chiari 1 Malformation (ACM1) patients based on intervention methods, i.e., posterior fossa decompression without duraplasty and with duraplasty in terms of symptomatic and functional improvement
Materials and Methods: This study was conducted prospectively over 41 months from January 2013 to May 2016. Patients with confirmed diagnosis of ACM-1 were included in the study. Patients either underwent posterior fossa decompression without duraplasty or with duraplasty, depending upon the severity of tonsillar descent, the presence of syrinx, neurological deficits or hydrocephalous. Data was collected on pre-designed pro forma both pre-operatively and during follow up. Outcome was assessed according to Chicago Chiari Outcome Scale (CCOS). Data analysis was done using SPSS v 22.0.
Results: Posterior Fossa Decompression (PFD) without dural opening was performed in 13 patients while in 8 patients duraplasty was performed. Overall mean age was 32.95 ± 5.88 years and mean symptoms duration was 21.62 ± 8.82 months. The most common complaints were headache (76.2%), neck pain (61.9%), hand and arm weakness (47.6%), gait disturbance (47.6%) and cranial nerve dysfunctions (76.2%). The median preop CCOS was 10 ± 1.57 while postoperative CCOS was 13 ± 2.27. There was a significant relief in terms of CCOS improvement in preop and postoperative scores (P = 0.006). The commonest complication was CSF leak in 14.3% of patients. There was no mortality. No recurrent cases were noted during the 41-months study period.
Conclusion: Posterior fossa decompression forACM-I is simple and effective. Further studies regarding surgical outcome and development of outcome assessment are required with larger patient cohorts.
Abbreviations: CCOS: The Chicago Chiari Outcome Scale. CSF: Cerebrospinal Fluid. CV: Craniovertebral. OPD: Out Patient Department. SD: Standard Deviation. HMC: Hayat Abad Medical Complex. ACM1: Arnold Chain 1 Malformation
Cytokinin response factor 6 represses cytokinin-associated genes during oxidative stress
Cytokinin is a phytohormone that is well known for its roles in numerous plant growth and developmental processes, yet it has also been linked to abiotic stress response in a less defined manner. Arabidopsis (Arabidopsis thaliana) Cytokinin Response Factor 6 (CRF6) is a cytokinin-responsive AP2/ERF-family transcription factor that, through the cytokinin signaling pathway, plays a key role in the inhibition of dark-induced senescence. CRF6 expression is also induced by oxidative stress, and here we show a novel function for CRF6 in relation to oxidative stress and identify downstream transcriptional targets of CRF6 that are repressed in response to oxidative stress. Analysis of transcriptomic changes in wild-type and crf6 mutant plants treated with H2O2 identified CRF6-dependent differentially expressed transcripts, many of which were repressed rather than induced. Moreover, many repressed genes also show decreased expression in 35S:CRF6 overexpressing plants. Together, these findings suggest that CRF6 functions largely as a transcriptional repressor. Interestingly, among the H2O2 repressed CRF6-dependent transcripts was a set of five genes associated with cytokinin processes: (signaling) ARR6, ARR9, ARR11, (biosynthesis) LOG7, and (transport) ABCG14. We have examined mutants of these cytokinin-associated target genes to reveal novel connections to oxidative stress. Further examination of CRF6-DNA interactions indicated that CRF6 may regulate its targets both directly and indirectly. Together, this shows that CRF6 functions during oxidative stress as a negative regulator to control this cytokinin-associated module of CRF6-dependent genes and establishes a novel connection between cytokinin and oxidative stress response
Pseudomonas syringae type III effector HopAF1 suppresses plant immunity by targeting methionine recycling to block ethylene induction
Pseudomonas syringae is a Gram-negative bacterium that uses a type III secretion system to inject type III effector (T3E) proteins into the host to cause disease in plants. Multiple P. syringae T3Es promote virulence by targeting immune system signaling pathways using diverse biochemical mechanisms. We provide evidence for a molecular function of the P. syringae T3E HopAF1. We demonstrate that the C-terminal region of HopAF1 has structural homology to deamidases. We demonstrate that an enzyme important for production of the gaseous signaling hormone ethylene is a target for HopAF1 and show that HopAF1 targets methylthioadenosine nucleosidase proteins MTN1 and MTN2 to dampen ethylene production during bacterial infection
Identification of Norway Spruce MYB-bHLH-WDR Transcription Factor Complex Members Linked to Regulation of the Flavonoid Pathway
Transcription factors (TFs) forming MYB-bHLH-WDR complexes are known to regulate the biosynthesis of specialized metabolites in angiosperms through an intricate network. These specialized metabolites participate in a wide range of biological processes including plant growth, development, reproduction as well as in plant immunity. Studying the regulation of their biosynthesis is thus essential. While MYB (TFs) have been previously shown to control specialized metabolism (SM) in gymnosperms, the identity of their partners, in particular bHLH or WDR members, has not yet been revealed. To gain knowledge about MYB-bHLH-WDR transcription factor complexes in gymnosperms and their regulation of SW, we identified two bHLH homologs of AtTT8, six homologs of the MYB transcription factor AtTT2 and one WDR ortholog of AtTTG1 in Norway spruce. We investigated the expression levels of these genes in diverse tissues and upon treatments with various stimuli including methyl-salicylate, methyl-jasmonate, wounding or fungal inoculation. In addition, we also identified protein-protein interactions among different homologs of MYB, bHLH and WDR. Finally, we generated transgenic spruce cell lines overexpressing four of the Norway spruce AtTT2 homologs and observed differential regulation of genes in the flavonoid pathway and flavonoid contents
IRE1/bZIP60-Mediated Unfolded Protein Response Plays Distinct Roles in Plant Immunity and Abiotic Stress Responses
Endoplasmic reticulum (ER)-mediated protein secretion and quality control have been shown to play an important role in immune responses in both animals and plants. In mammals, the ER membrane-located IRE1 kinase/endoribonuclease, a key regulator of unfolded protein response (UPR), is required for plasma cell development to accommodate massive secretion of immunoglobulins. Plant cells can secrete the so-called pathogenesis-related (PR) proteins with antimicrobial activities upon pathogen challenge. However, whether IRE1 plays any role in plant immunity is not known. Arabidopsis thaliana has two copies of IRE1, IRE1a and IRE1b. Here, we show that both IRE1a and IRE1b are transcriptionally induced during chemically-induced ER stress, bacterial pathogen infection and treatment with the immune signal salicylic acid (SA). However, we found that IRE1a plays a predominant role in the secretion of PR proteins upon SA treatment. Consequently, the ire1a mutant plants show enhanced susceptibility to a bacterial pathogen and are deficient in establishing systemic acquired resistance (SAR), whereas ire1b is unaffected in these responses. We further demonstrate that the immune deficiency in ire1a is due to a defect in SA- and pathogen-triggered, IRE1-mediated cytoplasmic splicing of the bZIP60 mRNA, which encodes a transcription factor involved in the expression of UPR-responsive genes. Consistently, IRE1a is preferentially required for bZIP60 splicing upon pathogen infection, while IRE1b plays a major role in bZIP60 processing upon Tunicamycin (Tm)-induced stress. We also show that SA-dependent induction of UPR-responsive genes is altered in the bzip60 mutant resulting in a moderate susceptibility to a bacterial pathogen. These results indicate that the IRE1/bZIP60 branch of UPR is a part of the plant response to pathogens for which the two Arabidopsis IRE1 isoforms play only partially overlapping roles and that IRE1 has both bZIP60-dependent and bZIP60-independent functions in plant immunity
Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis
Natural variation of plant pathogen resistance is often quantitative. This type of resistance can be genetically dissected in quantitative resistance loci (QRL). To unravel the molecular basis of QRL in potato (Solanum tuberosum), we employed the model plant Arabidopsis thaliana for functional analysis of natural variants of potato allene oxide synthase 2 (StAOS2). StAOS2 is a candidate gene for QRL on potato chromosome XI against the oömycete Phytophthora infestans causing late blight, and the bacterium Erwinia carotovora ssp. atroseptica causing stem black leg and tuber soft rot, both devastating diseases in potato cultivation. StAOS2 encodes a cytochrome P450 enzyme that is essential for biosynthesis of the defense signaling molecule jasmonic acid. Allele non-specific dsRNAi-mediated silencing of StAOS2 in potato drastically reduced jasmonic acid production and compromised quantitative late blight resistance. Five natural StAOS2 alleles were expressed in the null Arabidopsis aos mutant under control of the Arabidopsis AOS promoter and tested for differential complementation phenotypes. The aos mutant phenotypes evaluated were lack of jasmonates, male sterility and susceptibility to Erwinia carotovora ssp. carotovora. StAOS2 alleles that were associated with increased disease resistance in potato complemented all aos mutant phenotypes better than StAOS2 alleles associated with increased susceptibility. First structure models of ‘quantitative resistant’ versus ‘quantitative susceptible’ StAOS2 alleles suggested potential mechanisms for their differential activity. Our results demonstrate how a candidate gene approach in combination with using the homologous Arabidopsis mutant as functional reporter can help to dissect the molecular basis of complex traits in non model crop plants
Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates
Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species
Recommended from our members
The Top 10 oomycete pathogens in molecular plant pathology
Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens which threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant-pathogenic oomycete species based on scientific and economic importance. In total, we received 263 votes from 62 scientists in 15 countries for a total of 33 species. The Top 10 species and their ranking are: (1) Phytophthora infestans; (2, tied) Hyaloperonospora arabidopsidis; (2, tied) Phytophthora ramorum; (4) Phytophthora sojae; (5) Phytophthora capsici; (6) Plasmopara viticola; (7) Phytophthora cinnamomi; (8, tied) Phytophthora parasitica; (8, tied) Pythium ultimum; and (10) Albugo candida. This article provides an introduction to these 10 taxa and a snapshot of current research. We hope that the list will serve as a benchmark for future trends in oomycete research.Keywords: microbiology, diversity, genomics, oomycetes plant patholog
- …