12 research outputs found

    Properties of a new insulation material glass bubble in geopolymer concrete

    Get PDF
    This paper details analytical research results into a novel geopolymer concrete embedded with glass bubble as its thermal insulating material, fly ash as its precursor material, and a combination of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) as its alkaline activator to form a geopolymer system. The workability, density, compressive strength (per curing days), and water absorption of the sample loaded at 10% glass bubble (loading level determined to satisfy the minimum strength requirement of a load-bearing structure) were 70 mm, 2165 kg/m3, 52.58 MPa (28 days), 54.92 MPa (60 days), and 65.25 MPa (90 days), and 3.73 %, respectively. The thermal conductivity for geopolymer concrete decreased from 1.47 to 1.19 W/mK, while the thermal diffusivity decreased from 1.88 to 1.02 mm2/s due to increased specific heat from 0.96 to 1.73 MJ/m3K. The improved physicomechanical and thermal (insulating) properties resulting from embedding a glass bubble as an insulating material into geopolymer concrete resulted in a viable composite for use in the construction industry

    Interrelationship Analysis of Geopolymer Components using Pearson Correlation Technique

    No full text
    Performance of geopolymer based specimens is significantly affected by internal and external aspects. Curing temperature and air humidity are among the prominent external factors that contribute to the alteration of geopolymer properties. Nevertheless, internal component of geopolymer binder also carries essential effect to the hardened geopolymer binder produced. In this research, the study was concentrated on the elemental composition of source material components and their interrelation to the performance of geopolymer binder produced. Different types of fly ash were used as the source material in this research. Low calcium (class-F) fly ash was combined with high calcium (class-C) fly ash to determine the elemental composition effect, particularly SiO2, Al2O3, and CaO to the geopolymer properties. Analysis using SYSTAT statistical software indicated the importance of oxide composition of source material to the geopolymer specimens produced. Initial setting time of geopolymer paste was also possibly important to the compressive strength of geopolymer specimens produced. Nevertheless, final setting time indicated less importance to the compressive strength development of geopolymer binder

    Review on Thermal Insulation Performance in Various Type of Concrete

    Get PDF
    Thermal insulation concrete building plays an important role in environment sustainability especially energy saving buildings. Buildings are one of the largest consumers of energy worldwide. Therefore, significant energy saving can be realized by buildings with proper materials, design and operation. Thermal insulation systems are nowadays mostly applied for such building envelopes where the materials of load bearing structure such as concrete do not have a substantial thermal insulation capability. Thermal insulation in concrete are materials or combinations of materials that are used to provide resistance to heat flow, should have low conductivity for building application in order to represence of a temperature gradient, has an important effect on the heat exchange between the building interior and the ambiance. The aim of this paper is to review the thermal properties include thermal conductivity and specific heat on various types of concrete

    The influence of density, compressive strength and thermal conductivity under variety percentage of glass bubble in geopolymer concrete

    No full text
    In this study of various percentage addition of glass bubble as thermal insulated material (2.5, 5.0, 7.5 and 10 %) has influenced the concrete performance such as density, compressive strength and thermal conductivity. The compressive strength of geopolymer concretes achieved the maximum strength with 10 % glass bubble at 65.25 MPa for 90 days with the lowest density achieved at 2165 kg/m³. The thermal conductivity of geopolymer concrete with the present addition of glass bubble as thermal insulated materials showing better thermal insulation properties with decrease of density to 1.20 W/mK. Results highlight the thermal conductivity showing better result with reducing density of the geopolymer concrete due to the addition of glass bubble in the geopolymer concrete. The unique of spherically shape and light hollow sphere of glass bubble in the geopolymer concrete contributed better performance towards thermal insulation application with low density and thermal conductivity within applicable strength

    Review on Characterization and Mechanical Performance of Self-cleaning Concrete

    No full text
    Self-cleaning concrete is an effective alternative to provide cleaner environment which contribute to sustainability and towards a green environment. It is in accordance with the requirements of environmental issues on huge energy consumption and air pollution from carbon dioxide (CO2) emissions. Photocatalyst in self-cleaning concrete accelerates the decomposition of organic particulates, hence pollution could be reduced through photocatalytic degradation of gaseous pollutants. Mechanical performances of self-cleaning concrete were improved by adding photocatalytic materials. Self cleaning abilities were evaluated in the photocatalytic activity test under UV light and photocatalytic degradation of gaseous pollutant was measured by depollution test. This review aims to give an overview about the characteristics of photocatalytic materials and mechanical performances of self-cleaning concrete

    Review on Characterization and Mechanical Performance of Self-cleaning Concrete

    No full text
    Self-cleaning concrete is an effective alternative to provide cleaner environment which contribute to sustainability and towards a green environment. It is in accordance with the requirements of environmental issues on huge energy consumption and air pollution from carbon dioxide (CO2) emissions. Photocatalyst in self-cleaning concrete accelerates the decomposition of organic particulates, hence pollution could be reduced through photocatalytic degradation of gaseous pollutants. Mechanical performances of self-cleaning concrete were improved by adding photocatalytic materials. Self cleaning abilities were evaluated in the photocatalytic activity test under UV light and photocatalytic degradation of gaseous pollutant was measured by depollution test. This review aims to give an overview about the characteristics of photocatalytic materials and mechanical performances of self-cleaning concrete

    Drought Analysis Based on Standardized Precipitation Evapotranspiration Index and Standardized Precipitation Index in Sarawak, Malaysia

    No full text
    Drought analysis via the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) is necessary for effective water resource management in Sarawak, Malaysia. Rainfall is the best indicator of a drought, but the temperature is also significant because it controls evaporation and condensation. This study examined drought periods in the state of Sarawak using the SPI and SPEI based on monthly precipitation and temperature data from thirty-three rainfall stations during a forty-year period (1981–2020). This analysis of drought conditions revealed that both the SPI and SPEI were able to detect drought temporal variations with distinct time scales (3, 6, 9, and 12 months). Taking precipitation and evapotranspiration data into account, the SPEI was able to identify more severe-to-extreme drought in the study area over longer time periods and moderate droughts over shorter time periods than the standard drought index. According to Pearson correlation coefficients, a substantial association existed between the SPI and SPEI during hydrological dryness. Based on the results, the temperature is a decisive factor in drought classification, and the SPI should only be used in the absence of temperature data

    Setting Time and after Setting Properties of High Calcium Fly Ash Geopolymers with Different Concentration of Sodium Hydroxide

    No full text
    Setting time in geopolymers is known as the time taken for the transition phase of liquid to solid of the geopolymer system in which is represented in the initial setting and final setting. Setting time is significant specifically for application in the construction field. This study intends to determine the setting time of high calcium fly ash geopolymers and the properties of the geopolymers after setting (1-day age). This includes the determination of heat evolved throughout geopolymerization using Differential Scanning Calorimeter. After setting properties determination includes compressive strength and morphology analysis at 1-day age. High calcium fly ash was used as geopolymer precursor. Meanwhile, for mixing design, the alkali activator was a mixture of sodium silicate and sodium hydroxide (concentration varied from 6M-14M) with a ratio of 2.5 and a solid-to-liquid ratio of 2.5. From this study, it was found that high calcium fly ash geopolymer with 12M of NaOH has a reasonable setting time which is suitable for on-site application as well as an optimal heat evolved (-212 J/g) which leads to the highest compressive strength at 1-day age and no formation of microcracks observed on the morphology. Beyond 12M, too much heat evolved in the geopolymer system can cause micro-cracks formation thus lowering the compressive strength at 1-day age

    Morphology and Properties of Geopolymer Coatings on Glass Fibre-Reinforced Epoxy (GRE) pipe

    No full text
    Geopolymer coatings were coated on glass fibre-reinforced epoxy (GRE) pipe by using kaolin, white clay and silica sand as source materials and sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) as alkaline solution. The microstructure and mechanical property of geopolymer coating on GRE pipe were methodically investigated through morphology analysis, and flexural strength test. The result indicates the microstructure and interfacial layer between geopolymer coating and GRE pipe significantly influence the mechanical property of geopolymer coating. However, different source materials gave different microstructure and property in geopolymer coating

    Morphology and Properties of Geopolymer Coatings on Glass Fibre-Reinforced Epoxy (GRE) pipe

    No full text
    Geopolymer coatings were coated on glass fibre-reinforced epoxy (GRE) pipe by using kaolin, white clay and silica sand as source materials and sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) as alkaline solution. The microstructure and mechanical property of geopolymer coating on GRE pipe were methodically investigated through morphology analysis, and flexural strength test. The result indicates the microstructure and interfacial layer between geopolymer coating and GRE pipe significantly influence the mechanical property of geopolymer coating. However, different source materials gave different microstructure and property in geopolymer coating
    corecore