6 research outputs found
Antibacterial mechanism with consequent cytotoxicity of different reinforcements in biodegradable magnesium and zinc alloys : A review
Benefits achieved by the biodegradable magnesium (Mg) and zinc (Zn) implants could be suppressed due to the invasion of infectious microbial, common bacteria, and fungi. Postoperative medications and the antibacterial properties of pure Mg and Zn are insufficient against biofilm and antibiotic-resistant bacteria, bringing osteomyelitis, necrosis, and even death. This study evaluates the antibacterial performance of biodegradable Mg and Zn alloys of different reinforcements, including silver (Ag), copper (Cu), lithium (Li), and gallium (Ga). Copper ions (Cu2+) can eradicate biofilms and antibiotic-resistant bacteria by extracting electrons from the cellular structure. Silver ion (Ag+) kills bacteria by creating bonds with the thiol group. Gallium ion (Ga3+) inhibits ferric ion (Fe3+) absorption, leading to nutrient deficiency and bacterial death. Nanoparticles and reactive oxygen species (ROS) can penetrate bacteria cell walls directly, develop bonds with receptors, and damage nucleotides. Antibacterial action depends on the alkali nature of metal ions and their degradation rate, which often causes cytotoxicity in living cells. Therefore, this review emphasizes the insight into degradation rate, antibacterial mechanism, and their consequent cytotoxicity and observes the correlation between antibacterial performance and oxidation number of metal ions
Microstructure and mechanical performance of low-cost biomedical-grade Titanium-316L alloy
A 316L stainless steel (SS) alloy was developed with 1, 3, and 5 vol% titanium (Ti) reinforcement using the powder injection molding route, representing a low-cost option for biomedical implants. The investigation encompassed 1300 °C, 1350 °C, and 1380 °C sintering temperatures to ascertain the optimal physical and mechanical properties. Both sintering temperature and Ti influenced sintered density, and Ti mitigated the deleterious effects of residual carbon. At higher sintering temperatures, carbon and silicon tended to migrate and accumulate at the brink of Ti, leading to the formation of intermetallic compounds and increased brittleness. Dispersed Ti particles within the 316L matrix acted as nucleation sites and enhanced solid solubility with improved density. An astounding 96.11 % sintered density was achieved at 3 vol% Ti sample sintered at 1380 °C. During the tensile test, 5 vol% Ti at 1380 °C exhibited a low modulus of 58.9 GPa, which is highly desirable for orthopedic implant application. The XRD, SEM, tensile test, and nano-indentation results collectively provide evidence of beta-titanium formation during the sintering process. Conversely, the sample incorporating 3 vol% titanium, sintered at 1380 °C, demonstrated a balanced performance, showcasing 432.94 ± 12.8 MPa ultimate tensile strength, 3.06 ± 0.17 % elongation, 74.2 GPa modulus, and 322 MPa and 423 MPa 0.2 % offset flexural and compressive yield strengths, respectively. Notably, an improvised wear resistance test underscored its aptitude for sliding wear resistance, solidifying its potential as a promising candidate for biomedical implants
Prevalence of Type 2 Diabetes Mellitus Among Urban Bihari Communities in Dhaka, Bangladesh: A Cross-sectional Study in a Minor Ethnic Group
Introduction
The prevalence, disease progression, and treatment outcomes for patients with type 2 diabetes vary significantly between ethnic groups. The Bihari community constitutes one of the most vulnerable populations in Bangladesh on the basis of access to health services and other fundamental rights. Our study aimed at finding out the prevalence and risk factors of type 2 diabetes among the Bihari adults in Dhaka city.
Methods
This cross-sectional community-based study was carried out among stranded Pakistanis (known as Bihari) living in camps in the Mirpur area from July 2014 to June 2015. Laboratory-based oral glucose tolerance test (OGTT) was the basis for the diagnosis of type 2 diabetes mellitus (DM). Anthropometric measurements, blood pressure, biochemical tests, family history, and socioeconomic information were obtained to determine the risk factors.
Results
The prevalence of diabetes mellitus (DM), impaired glucose tolerance (IGT), and impaired fasting glucose (IFG) were estimated at 10.11%, 8.74%, and 4.55%, respectively. Increased diastolic blood pressure, serum triglyceride, and cholesterol level were observed to be significantly (p < 0.05) associated with diabetes. Also, the presence of diabetes, high blood pressure, and obesity among relatives significantly increased the probability of diabetes.
Conclusions
To the best of our knowledge, this is the first study on diabetes prevalence among the Bihari community in Bangladesh. The prevalence of type 2 diabetes mellitus was found to be higher among the Bihari community compared to the general population in Bangladesh. Health planners and policymakers should realize the alarming situation and identified risk factors and consider the minor ethnic groups during decision-making regarding prevention and control of diabetes and other noncommunicable diseases
Assessment of remote sensing-based indices for drought monitoring in the north-western region of Bangladesh
Drought is a widespread hazard that can tremendously affect the biodiversity, habitat of wild species, and ecosystem functioning and stability, especially in the dry region. Due to its geographic location, the north-western region of Bangladesh has a comparatively arid climate which is very much susceptible to drought occurrence and is marked as a red zone. Despite the growing evidence of the impact of drought on food security and ecosystem functioning, little effort has been paid to mitigate the drought in this region. The present study aimed to assess the drought condition of the north-western region of Bangladesh using earth observation techniques. For this purpose, Landsat data from 1990 to 2020 was used to determine various vegetation indices such as Normalized Difference Vegetation Index (NDVI), Water Index (NDWI), Moisture Index (NDMI) and Soil Adjusted Vegetation Index (SAVI), along with Land Surface Temperature (LST). Results show that the depletion of forests (2832 km2) and water bodies (6773 km2) resulted from the expansion of settlement (6563 km2) and agricultural land (1802 km2) for the period 1990–2020. Examination of the temporal changes of vegetation indices and LST showed that the values of all indices decreased while the LST increased. The negative correlation between NDVI value and LST indicates that the vegetation in our study was subject to drought-induced shocks. This study reveals the current situation of the vegetation health in the north-western region of Bangladesh in relation to the drought conditions. The findings of this study have practical implications for the policymakers in implementing necessary measures for agriculture, forests, water development, and economic zone planning
Prevalence and types of high-risk human papillomaviruses in head and neck cancers from Bangladesh
Abstract Background There is a dramatic rise in the incidence of Human papillomavirus (HPV) – associated head and neck squamous cell carcinoma (HNSCC) in the world, with considerable variation by geography, gender and ethnicity. Little is known about the situation in Bangladesh, where tobacco- and areca nut-related head and neck cancers (HNCs) are the most common cancers in men. We aimed to determine the prevalence of HPV in HNSCC in Bangladesh and to explore the possible value of cell cycle markers in clinical diagnostic settings. Methods One hundred and ninety six archival HNSCC tissue samples were analysed for the presence of HPV DNA. The DNA quality was assured, and then amplified using a nested PCR approach. The typing of HPV was performed by automated DNA sequencing. Cellular markers p53, Cyclin D1 and pRb were tested on all samples by immunohistochemistry (IHC), as well as p16 as a putative surrogate for the detection of HPV. Results HPV DNA was detected in 36/174 (~21%) samples: 36% of cancers from the oropharynx; 31% of oral cancers, and 22% from the larynx. HPV-16 was most common, being present in 33 samples, followed by HPV-33 (2 samples) and HPV-31 (1 sample). Twenty-eight out of 174 samples were positive for p16, predominantly in HPV-positive tissues (p < 0.001). No statistically significant association was observed between the cellular markers and HPV DNA positive cases. However, p16 positivity had excellent predictive value for the presence of HPV by PCR. Conclusion There is a significant burden of HPV-associated HNSCC in Bangladesh, particularly in the oropharynx but also in oral and laryngeal cancers. Whilst a combination of PCR-based DNA detection and p16 IHC is useful, the latter has excellent specificity, acceptable sensitivity and good predictive value for carriage of HPV in this population and should be used for prognostic evaluation and treatment planning of all HNSCC patients in South Asia, as in the Western world