476 research outputs found

    Effect of some environmental factors on the acute toxicity of deltamethrin to common carp: a laboratory study under aerobic condition

    Get PDF
    The toxicity of xenobiotic in aquatic ecosystems is influenced by many factors such as ambient temperature, water hardness, pond soil type, etc. In the present study, it was observed that air temperature, water hardness and soil sediment have profound influence on the toxicity of deltamethrin to common carp fry (ay. length 3.5 ± 0.5 cm, ay. weight 0.58 ± 0.25 g); 96h LC(sub)50 values for common carp at 38.07 ± 2.20°C maximum and 27.86 ± 1.22°C minimum air temperature in soft and very hard water were 0.102 and 0.495 µg lˉ¹, respectively. This value had increased significantly to 2.37 and 3.02 µg at 30.55 ± 1.21°C maximum and 26.04 ± 0.61°C minimum air temperature, respectively. When sediment was included, 96h LC(sub)50 at 38.07°C maximum temperature in very hard water was 1.808 µg 1ˉ¹ and this had increased to 8.073 µg 1ˉ¹ when tested at 30.55°C maximum temperature. Due to the 7.5°C increase in maximum and 1.7°C in minimum temperature, toxicity increased significantly. Lower toxicity in very hard water in comparison to soft water may be due to the lower solubility of deltarnethrin and high level of calcium. Adsorption reaction of deltamethrin with clay, humus, FeOOH, MnOOH and particulate organic carbon, and complexation reaction with dissolved organic carbon were responsible for the lowered toxicity in the experiment with sediment. Exposure time had no significant effect on acute toxicity of deltamethrin

    Effect of gestational age at birth on neonatal outcomes in gastroschisis.

    Get PDF
    Induced birth of fetuses with gastroschisis from 34weeks gestational age (GA) has been proposed to reduce bowel damage. We aimed to determine the effect of birth timing on time to full enteral feeds (ENT), length of hospital stay (LOS), and sepsis. A retrospective analysis (2000-2014) of gastroschisis born at ≥34weeks GA was performed. Associations between birth timing and outcomes were analyzed by Mann-Whitney test, Cox regression, and Fisher's exact test. 217 patients were analyzed. Although there was no difference in ENT between those born at 34-36+6weeks GA (median 28 range [6-639] days) compared with ≥37weeks GA (27 [8-349] days) when analyzed by Mann-Whitney test (p=0.5), Cox regression analysis revealed that lower birth GA significantly prolonged ENT (p=0.001). LOS was significantly longer in those born at 34-36+6weeks GA (42 [8-346] days) compared with ≥37weeks GA 34 [11-349] days by both Mann-Whitney (p=0.02) and Cox regression analysis (p<0.0005). Incidence of sepsis was higher in infants born at 34-36+6weeks (32%) vs. infants born at ≥37weeks (17%; p=0.02). Early birth of fetuses with gastroschisis was associated with delay in reaching full enteral feeds, prolonged hospitalization, and a higher incidence of sepsis

    Integration of genetics into a systems model of electrocardiographic traits using humanCVD BeadChip

    Get PDF
    <p>Background—Electrocardiographic traits are important, substantially heritable determinants of risk of arrhythmias and sudden cardiac death.</p> <p>Methods and Results—In this study, 3 population-based cohorts (n=10 526) genotyped with the Illumina HumanCVD Beadchip and 4 quantitative electrocardiographic traits (PR interval, QRS axis, QRS duration, and QTc interval) were evaluated for single-nucleotide polymorphism associations. Six gene regions contained single nucleotide polymorphisms associated with these traits at P<10−6, including SCN5A (PR interval and QRS duration), CAV1-CAV2 locus (PR interval), CDKN1A (QRS duration), NOS1AP, KCNH2, and KCNQ1 (QTc interval). Expression quantitative trait loci analyses of top associated single-nucleotide polymorphisms were undertaken in human heart and aortic tissues. NOS1AP, SCN5A, IGFBP3, CYP2C9, and CAV1 showed evidence of differential allelic expression. We modeled the effects of ion channel activity on electrocardiographic parameters, estimating the change in gene expression that would account for our observed associations, thus relating epidemiological observations and expression quantitative trait loci data to a systems model of the ECG.</p> <p>Conclusions—These association results replicate and refine the mapping of previous genome-wide association study findings for electrocardiographic traits, while the expression analysis and modeling approaches offer supporting evidence for a functional role of some of these loci in cardiac excitation/conduction.</p&gt

    Vacancy-assisted domain-growth in asymmetric binary alloys: a Monte Carlo study

    Full text link
    A Monte Carlo simulation study of the vacancy-assisted domain-growth in asymmetric binary alloys is presented. The system is modeled using a three-state ABV Hamiltonian which includes an asymmetry term, not considered in previous works. Our simulated system is a stoichiometric two-dimensional binary alloy with a single vacancy which evolves according to the vacancy-atom exchange mechanism. We obtain that, compared to the symmetric case, the ordering process slows down dramatically. Concerning the asymptotic behavior it is algebraic and characterized by the Allen-Cahn growth exponent x=1/2. The late stages of the evolution are preceded by a transient regime strongly affected by both the temperature and the degree of asymmetry of the alloy. The results are discussed and compared to those obtained for the symmetric case.Comment: 21 pages, 9 figures, accepted for publication in Phys. Rev.

    An Exact Algorithm for Side-Chain Placement in Protein Design

    Get PDF
    Computational protein design aims at constructing novel or improved functions on the structure of a given protein backbone and has important applications in the pharmaceutical and biotechnical industry. The underlying combinatorial side-chain placement problem consists of choosing a side-chain placement for each residue position such that the resulting overall energy is minimum. The choice of the side-chain then also determines the amino acid for this position. Many algorithms for this NP-hard problem have been proposed in the context of homology modeling, which, however, reach their limits when faced with large protein design instances. In this paper, we propose a new exact method for the side-chain placement problem that works well even for large instance sizes as they appear in protein design. Our main contribution is a dedicated branch-and-bound algorithm that combines tight upper and lower bounds resulting from a novel Lagrangian relaxation approach for side-chain placement. Our experimental results show that our method outperforms alternative state-of-the art exact approaches and makes it possible to optimally solve large protein design instances routinely

    Prelamin A mediates myocardial inflammation in dilated and HIV-associated cardiomyopathies

    Get PDF
    Cardiomyopathies are complex heart muscle diseases that can be inherited or acquired. Dilated cardiomyopathy can result from mutations in LMNA, encoding the nuclear intermediate filament proteins lamin A/C. Some LMNA mutations lead to accumulation of the lamin A precursor, prelamin A, which is disease causing in a number of tissues, yet its impact upon the heart is unknown. Here, we discovered myocardial prelamin A accumulation occurred in a case of dilated cardiomyopathy, and we show that a potentially novel mouse model of cardiac-specific prelamin A accumulation exhibited a phenotype consistent with inflammatory cardiomyopathy, which we observed to be similar to HIV-associated cardiomyopathy, an acquired disease state. Numerous HIV protease therapies are known to inhibit ZMPSTE24, the enzyme responsible for prelamin A processing, and we confirmed that accumulation of prelamin A occurred in HIV+ patient cardiac biopsies. These findings (a) confirm a unifying pathological role for prelamin A common to genetic and acquired cardiomyopathies; (b) have implications for the management of HIV patients with cardiac disease, suggesting protease inhibitors should be replaced with alternative therapies (i.e., nonnucleoside reverse transcriptase inhibitors); and (c) suggest that targeting inflammation may be a useful treatment strategy for certain forms of inherited cardiomyopathy

    Classical approach in quantum physics

    Full text link
    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom recently discovered with the help of Poincareˊ\acute{\mathrm{e}} section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treating as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormgroup symmetry, criterion of accuracy and so on are reviewed as well. In conclusion, the relation between quantum theory, classical physics and measurement is discussed.Comment: This review paper was rejected from J.Phys.A with referee's comment "The author has made many worthwhile contributions to semiclassical physics, but this article does not meet the standard for a topical review"

    Optical symmetries and anisotropic transport in high-Tc superconductors

    Full text link
    A simple symmetry analysis of in-plane and out-of-plane transport in a family of high temperature superconductors is presented. It is shown that generalized scaling relations exist between the low frequency electronic Raman response and the low frequency in-plane and out-of-plane conductivities in both the normal and superconducting states of the cuprates. Specifically, for both the normal and superconducting state, the temperature dependence of the low frequency B1gB_{1g} Raman slope scales with the cc-axis conductivity, while the B2gB_{2g} Raman slope scales with the in-plane conductivity. Comparison with experiments in the normal state of Bi-2212 and Y-123 imply that the nodal transport is largely doping independent and metallic, while transport near the BZ axes is governed by a quantum critical point near doping p0.22p\sim 0.22 holes per CuO2_{2} plaquette. Important differences for La-214 are discussed. It is also shown that the cc- axis conductivity rise for TTcT\ll T_{c} is a consequence of partial conservation of in-plane momentum for out-of-plane transport.Comment: 16 pages, 8 Figures (3 pages added, new discussion on pseudogap and charge ordering in La214

    Aldose Reductase Genotypes and Cardiorenal Complications: An 8-year prospective analysis of 1,074 type 2 diabetic patients

    Get PDF
    OBJECTIVE—We report the independent risk association of type 2 diabetic nephropathy with the z−2 allele of the 5′-(CA)n microsatellite and C-106T promoter polymorphisms of the aldose reductase gene (ALR2) using a case-control design. In this expanded cohort, we examined their predictive roles on new onset of cardiorenal complications using a prospective design
    corecore