228 research outputs found

    Effect of polygenic risk for schizophrenia on cardiac structure and function: a UK Biobank observational study

    Get PDF
    BACKGROUND: Cardiovascular disease is a major cause of excess mortality in people with schizophrenia. Several factors are responsible, including lifestyle and metabolic effects of antipsychotics. However, variations in cardiac structure and function are seen in people with schizophrenia in the absence of cardiovascular disease risk factors and after accounting for lifestyle and medication. Therefore, we aimed to explore whether shared genetic causes contribute to these cardiac variations. METHODS: For this observational study, we used data from the UK Biobank and included White British or Irish individuals without diagnosed schizophrenia with variable polygenic risk scores for the condition. To test the association between polygenic risk score for schizophrenia and cardiac phenotype, we used principal component analysis and regression. Robust regression was then used to explore the association between the polygenic risk score for schizophrenia and individual cardiac phenotypes. We repeated analyses with fibro-inflammatory pathway-specific polygenic risk scores for schizophrenia. Last, we investigated genome-wide sharing of common variants between schizophrenia and cardiac phenotypes using linkage disequilibrium score regression. The primary outcome was principal component regression. FINDINGS: Of 33 353 individuals recruited, 32 279 participants had complete cardiac MRI data and were included in the analysis, of whom 16 625 (51·5%) were female and 15 654 (48·5%) were male. 1074 participants were excluded on the basis of incomplete cardiac MRI data (for all phenotypes). A model regressing polygenic risk scores for schizophrenia onto the first five cardiac principal components of the principal components analysis was significant (F=5·09; p=0·00012). Principal component 1 captured a pattern of increased cardiac volumes, increased absolute peak diastolic strain rates, and reduced ejection fractions; polygenic risk scores for schizophrenia and principal component 1 were negatively associated (β=-0·01 [SE 0·003]; p=0·017). Similar to the principal component analysis results, for individual cardiac phenotypes, we observed negative associations between polygenic risk scores for schizophrenia and indexed right ventricular end-systolic volume (β=-0·14 [0·04]; p=0·0013, pFDR=0·015), indexed right ventricular end-diastolic volume (β=-0·17 [0·08]); p=0·025; pFDR=0·082), and absolute longitudinal peak diastolic strain rates (β=-0·01 [0·003]; p=0·0024, pFDR=0·015), and a positive association between polygenic risk scores for schizophrenia and right ventricular ejection fraction (β=0·09 [0·03]; p=0·0041, pFDR=0·015). Models examining the transforming growth factor-β (TGF-β)-specific and acute inflammation-specific polygenic risk scores for schizophrenia found significant associations with the first five principal components (F=2·62, p=0·022; F=2·54, p=0·026). Using linkage disequilibrium score regression, we observed genetic overlap with schizophrenia for right ventricular end-systolic volume and right ventricular ejection fraction (p=0·0090, p=0·0077). INTERPRETATION: High polygenic risk scores for schizophrenia are associated with decreased cardiac volumes, increased ejection fractions, and decreased absolute peak diastolic strain rates. TGF-β and inflammatory pathways might be implicated, and there is evidence of genetic overlap for some cardiac phenotypes. Reduced absolute peak diastolic strain rates indicate increased myocardial stiffness and diastolic dysfunction, which increases risk of cardiac disease. Thus, genetic risk for schizophrenia is associated with cardiac structural changes that can worsen cardiac outcomes. Further work is required to determine whether these associations are specific to schizophrenia or are also seen in other psychiatric conditions. FUNDING: National Institute for Health Research, Maudsley Charity, Wellcome Trust, Medical Research Council, Academy of Medical Sciences, Edmond J Safra Foundation, British Heart Foundation

    The Surgical Infection Society revised guidelines on the management of intra-abdominal infection

    Get PDF
    Background: Previous evidence-based guidelines on the management of intra-abdominal infection (IAI) were published by the Surgical Infection Society (SIS) in 1992, 2002, and 2010. At the time the most recent guideline was released, the plan was to update the guideline every five years to ensure the timeliness and appropriateness of the recommendations. Methods: Based on the previous guidelines, the task force outlined a number of topics related to the treatment of patients with IAI and then developed key questions on these various topics. All questions were approached using general and specific literature searches, focusing on articles and other information published since 2008. These publications and additional materials published before 2008 were reviewed by the task force as a whole or by individual subgroups as to relevance to individual questions. Recommendations were developed by a process of iterative consensus, with all task force members voting to accept or reject each recommendation. Grading was based on the GRADE (Grades of Recommendation Assessment, Development, and Evaluation) system; the quality of the evidence was graded as high, moderate, or weak, and the strength of the recommendation was graded as strong or weak. Review of the document was performed by members of the SIS who were not on the task force. After responses were made to all critiques, the document was approved as an official guideline of the SIS by the Executive Council. Results: This guideline summarizes the current recommendations developed by the task force on the treatment of patients who have IAI. Evidence-based recommendations have been made regarding risk assessment in individual patients; source control; the timing, selection, and duration of antimicrobial therapy; and suggested approaches to patients who fail initial therapy. Additional recommendations related to the treatment of pediatric patients with IAI have been included. Summary: The current recommendations of the SIS regarding the treatment of patients with IAI are provided in this guideline

    The Urological Association of Asia clinical guideline for urinary stone disease

    Get PDF
    The Urological Association of Asia, consisting of 25 member associations and one affiliated member since its foundation in 1990, has planned to develop Asian guidelines for all urological fields. The field of stone diseases is the third of its guideline projects. Because of the different climates, and social, economic and ethnic environments, the clinical practice for urinary stone diseases widely varies among the Asian countries. The committee members of the Urological Association of Asia on the clinical guidelines for urinary stone disease carried out a surveillance study to better understand the diversity of the treatment strategy among different regions and subsequent systematic literature review through PubMed and MEDLINE database between 1966 and 2017. Levels of evidence and grades of recommendation for each management were decided according to the relevant strategy. Each clinical question and answer were thoroughly reviewed and discussed by all committee members and their colleagues, with suggestions from expert representatives of the American Urological Association and European Association of Urology. However, we focused on the pragmatic care of patients and our own evidence throughout Asia, which included recent surgical trends, such as miniaturized percutaneous nephrolithotomy and endoscopic combined intrarenal surgery. This guideline covers all fields of stone diseases, from etiology to recurrence prevention. Here, we present a short summary of the first version of the guideline – consisting 43 clinical questions – and overview its key practical issues

    Comparative analysis of the human hepatic and adipose tissue transcriptomes during LPS-induced inflammation leads to the identification of differential biological pathways and candidate biomarkers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin resistance (IR) is accompanied by chronic low grade systemic inflammation, obesity, and deregulation of total body energy homeostasis. We induced inflammation in adipose and liver tissues <it>in vitro </it>in order to mimic inflammation <it>in vivo </it>with the aim to identify tissue-specific processes implicated in IR and to find biomarkers indicative for tissue-specific IR.</p> <p>Methods</p> <p>Human adipose and liver tissues were cultured in the absence or presence of LPS and DNA Microarray Technology was applied for their transcriptome analysis. Gene Ontology (GO), gene functional analysis, and prediction of genes encoding for secretome were performed using publicly available bioinformatics tools (DAVID, STRING, SecretomeP). The transcriptome data were validated by proteomics analysis of the inflamed adipose tissue secretome.</p> <p>Results</p> <p>LPS treatment significantly affected 667 and 483 genes in adipose and liver tissues respectively. The GO analysis revealed that during inflammation adipose tissue, compared to liver tissue, had more significantly upregulated genes, GO terms, and functional clusters related to inflammation and angiogenesis. The secretome prediction led to identification of 399 and 236 genes in adipose and liver tissue respectively. The secretomes of both tissues shared 66 genes and the remaining genes were the differential candidate biomarkers indicative for inflamed adipose or liver tissue. The transcriptome data of the inflamed adipose tissue secretome showed excellent correlation with the proteomics data.</p> <p>Conclusions</p> <p>The higher number of altered proinflammatory genes, GO processes, and genes encoding for secretome during inflammation in adipose tissue compared to liver tissue, suggests that adipose tissue is the major organ contributing to the development of systemic inflammation observed in IR. The identified tissue-specific functional clusters and biomarkers might be used in a strategy for the development of tissue-targeted treatment of insulin resistance in patients.</p

    Dissociation of CAK from Core TFIIH Reveals a Functional Link between XP-G/CS and the TFIIH Disassembly State

    Get PDF
    Transcription factor II H (TFIIH) is comprised of core TFIIH and Cdk-activating kinase (CAK) complexes. Here, we investigated the molecular and cellular manifestation of the TFIIH compositional changes by XPG truncation mutations. We showed that both core TFIIH and CAK are rapidly recruited to damage sites in repair-proficient cells. Chromatin immunoprecipitation against TFIIH and CAK components revealed a physical engagement of CAK in nucleotide excision repair (NER). While XPD recruitment to DNA damage was normal, CAK was not recruited in severe XP-G and XP-G/CS cells, indicating that the associations of CAK and XPD to core TFIIH are differentially affected. A CAK inhibition approach showed that CAK activity is not required for assembling pre-incision machinery in vivo or for removing genomic photolesions. Instead, CAK is involved in Ser5-phosphorylation and UV-induced degradation of RNA polymerase II. The CAK inhibition impaired transcription from undamaged and UV-damaged reporter, and partially decreased transcription of p53-dependent genes. The overall results demonstrated that a) XP-G/CS mutations affect the disassembly state of TFIIH resulting in the dissociation of CAK, but not XPD from core TFIIH, and b) CAK activity is not essential for global genomic repair but involved in general transcription and damage-induced RNA polymerase II degradation

    RNA delivery by extracellular vesicles in mammalian cells and its applications.

    Get PDF
    The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications

    Centrality and transverse momentum dependence of D-0-meson production at mid-rapidity in Au plus Au collisions ats root S-NN=200 GeV

    Get PDF

    Collision-energy dependence of p(t) correlations in Au plus Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

    Get PDF
    • …
    corecore