35,196 research outputs found

    Multispectral data restoration study

    Get PDF
    A digital resampling technique for LANDSAT data is reported that incorporates a deconvolution concept to minimize spatial and radiometric degradation of data during resampling for geometric correction. A quantitative comparison of cubic convolution and digital restoration methods establishes the latter as the superior technique

    Prediction of the capacitance lineshape in two-channel quantum dots

    Full text link
    We propose a set-up to realize two-channel Kondo physics using quantum dots. We discuss how the charge fluctuations on a small dot can be accessed by using a system of two single electron transistors arranged in parallel. We derive a microscopic Hamiltonian description of the set-up that allows us to make connection with the two-channel Anderson model (of extended use in the context of heavy-Fermion systems) and in turn make detailed predictions for the differential capacitance of the dot. We find that its lineshape, which we determined precisely, shows a robust behavior that should be experimentally verifiable.Comment: 4 pages, 3 figure

    Optimizing photon indistinguishability in the emission from incoherently-excited semiconductor quantum dots

    Full text link
    Most optical quantum devices require deterministic single-photon emitters. Schemes so far demonstrated in the solid state imply an energy relaxation which tends to spoil the coherent nature of the time evolution, and with it the photon indistinguishability. We focus our theoretical investigation on semiconductor quantum dots embedded in microcavities. Simple and general relations are identified between the photon indistinguishability and the collection efficiency. The identification of the key parameters and of their interplay provides clear indications for the device optimization

    Pose consensus based on dual quaternion algebra with application to decentralized formation control of mobile manipulators

    Full text link
    This paper presents a solution based on dual quaternion algebra to the general problem of pose (i.e., position and orientation) consensus for systems composed of multiple rigid-bodies. The dual quaternion algebra is used to model the agents' poses and also in the distributed control laws, making the proposed technique easily applicable to time-varying formation control of general robotic systems. The proposed pose consensus protocol has guaranteed convergence when the interaction among the agents is represented by directed graphs with directed spanning trees, which is a more general result when compared to the literature on formation control. In order to illustrate the proposed pose consensus protocol and its extension to the problem of formation control, we present a numerical simulation with a large number of free-flying agents and also an application of cooperative manipulation by using real mobile manipulators
    corecore