90 research outputs found

    Enhancing career development of postdoctoral trainees: act locally and beyond

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149264/1/tjp13462.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149264/2/tjp13462_am.pd

    Fibrinogen-Îł proteolysis and solubility dynamics during apoptotic mouse liver injury: Heparin prevents and treats liver damage

    Full text link
    Fas ligand (FasL)-mediated hepatocyte apoptosis occurs in the context of acute liver injury that can be accompanied by intravascular coagulation (IC). We tested the hypothesis that analysis of selected protein fractions from livers undergoing apoptosis will shed light on mechanisms that are involved in liver injury that might be amenable to intervention. Proteomic analysis of the major insoluble liver proteins after FasL exposure for 4-5 hours identified fibrinogen-γ (FIB-γ) dimers and FIB-γ–containing high molecular mass complexes among the major insoluble proteins visible via Coomassie blue staining. Presence of the FIB-γ–containing products was confirmed using FIB-γ–specific antibodies. The FIB-γ–containing products partition selectively and quantitatively into the liver parenchyma after inducing apoptosis. Similar formation of FIB-γ products occurs after acetaminophen administration. The observed intrahepatic IC raised the possibility that heparin therapy may ameliorate FasL-mediated liver injury. Notably, heparin administration in mice 4 hours before or up to 2 hours after FasL injection resulted in a dramatic reduction of liver injury—including liver hemorrhage, serum alanine aminotransferase, caspase activation, and liver apoptosis—compared with heparin-untreated mice. Heparin did not directly interfere with FasL-induced apoptosis in isolated hepatocytes, and heparin-treated mice survived the FasL-induced liver injury longer compared with heparin-untreated animals. There was a sharp, near-simultaneous rise in FasL-induced intrahepatic apoptosis and coagulation, with IC remaining stable while apoptosis continued to increase. Conclusion: Formation of FIB-γ dimers and their high molecular mass products are readily detectable within the liver during mouse apoptotic liver injury. Heparin provides a potential therapeutic modality, because it not only prevents extensive FasL-related liver injury but also limits the extent of injury if given at early stages of injury exposure. (H EPATOLOGY 2011;)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83742/1/24203_ftp.pd

    Impact of dietary manganese on experimental colitis in mice

    Full text link
    Diet plays a significant role in the pathogenesis of inflammatory bowel disease (IBD). A recent epidemiological study has shown an inverse relationship between nutritional manganese (Mn) status and IBD patients. Mn is an essential micronutrient required for normal cell function and physiological processes. To date, the roles of Mn in intestinal homeostasis remain unknown and the contribution of Mn to IBD has yet to be explored. Here, we provide evidence that Mn is critical for the maintenance of the intestinal barrier and that Mn deficiency exacerbates dextran sulfate sodium (DSS)â induced colitis in mice. Specifically, when treated with DSS, Mnâ deficient mice showed increased morbidity, weight loss, and colon injury, with a concomitant increase in inflammatory cytokine levels and oxidative and DNA damage. Even without DSS treatment, dietary Mn deficiency alone increased intestinal permeability by impairing intestinal tight junctions. In contrast, mice fed a Mnâ supplemented diet showed slightly increased tolerance to DSSâ induced experimental colitis, as judged by the colon length. Despite the wellâ appreciated roles of intestinal microbiota in driving inflammation in IBD, the gut microbiome composition was not altered by changes in dietary Mn. We conclude that Mn is necessary for proper maintenance of the intestinal barrier and provides protection against DSSâ induced colon injury.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154377/1/fsb220201_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154377/2/fsb220201-sup-0002-TableS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154377/3/fsb220201-sup-0005-TableS6.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154377/4/fsb220201.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154377/5/fsb220201-sup-0003-TableS4.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154377/6/fsb220201-sup-0004-TableS5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154377/7/fsb220201-sup-0001-TableS1-S2.pd

    Analysis of the peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) cistrome reveals novel co-regulatory role of ATF4

    Full text link
    Abstract Background The present study coupled expression profiling with chromatin immunoprecipitation sequencing (ChIP-seq) to examine peroxisome proliferator-activated receptor-β/δ (PPARβ/δ)-dependent regulation of gene expression in mouse keratinocytes, a cell type that expresses PPARβ/δ in high concentration. Results Microarray analysis elucidated eight different types of regulation that modulated PPARβ/δ-dependent gene expression of 612 genes ranging from repression or activation without an exogenous ligand, repression or activation with an exogenous ligand, or a combination of these effects. Bioinformatic analysis of ChIP-seq data demonstrated promoter occupancy of PPARβ/δ for some of these genes, and also identified the presence of other transcription factor binding sites in close proximity to PPARβ/δ bound to chromatin. For some types of regulation, ATF4 is required for ligand-dependent induction of PPARβ/δ target genes. Conclusions PPARβ/δ regulates constitutive expression of genes in keratinocytes, thus suggesting the presence of one or more endogenous ligands. The diversity in the types of gene regulation carried out by PPARβ/δ is consistent with dynamic binding and interactions with chromatin and indicates the presence of complex regulatory networks in cells expressing high levels of this nuclear receptor such as keratinocytes. Results from these studies are the first to demonstrate that differences in DNA binding of other transcription factors can directly influence the transcriptional activity of PPARβ/δ.http://deepblue.lib.umich.edu/bitstream/2027.42/112940/1/12864_2012_Article_4648.pd

    Cholestasis induces reversible accumulation of periplakin in mouse liver

    Full text link
    Abstract Background Periplakin (PPL) is a rod-shaped cytolinker protein thought to connect cellular adhesion junctional complexes to cytoskeletal filaments. PPL serves as a structural component of the cornified envelope in the skin and interacts with various types of proteins in cultured cells; its level decreases dramatically during tumorigenic progression in human epithelial tissues. Despite these intriguing observations, the physiological roles of PPL, especially in non-cutaneous tissues, are still largely unknown. Because we observed a marked fluctuation of PPL expression in mouse liver in association with the bile acid receptor farnesoid X receptor (FXR) and cholestasis, we sought to characterize the role of PPL in the liver and determine its contributions to the etiology and pathogenesis of cholestasis. Methods Time- and context-dependent expression of PPL in various mouse models of hepatic and renal disorders were examined by immunohistochemistry, western blotting, and quantitative real-time polymerase chain reactions. Results The hepatic expression of PPL was significantly decreased in Fxr −/− mice. In contrast, the expression was dramatically increased during cholestasis, with massive PPL accumulation observed at the boundaries of hepatocytes in wild-type mice. Interestingly, the hepatic accumulation of PPL resulting from cholestasis was reversible. In addition, similar accumulation of PPL at cellular boundaries was found in epithelial cells around renal tubules upon ureteral obstruction. Conclusions PPL may be involved in the temporal accommodation to fluid stasis in different tissues. Further examination of the roles for PPL may lead to the discovery of a novel mechanism for cellular protection by cytolinkers that is applicable to many tissues and in many contexts.http://deepblue.lib.umich.edu/bitstream/2027.42/112610/1/12876_2013_Article_974.pd

    Adrenoceptor‐related decrease in serum triglycerides is independent of PPARα activation

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151956/1/febs14966.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151956/2/febs14966_am.pd

    Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis

    Get PDF
    The mTOR complex 1 (mTORC1) and endoplasmic reticulum (ER) stress pathways are critical regulators of intestinal inflammation and colon cancer growth. Sestrins are stress-inducible proteins, which suppress both mTORC1 and ER stress; however, the role of Sestrins in colon physiology and tumorigenesis has been elusive due to the lack of studies in human tissues or in appropriate animal models. In this study, we show that human SESN2 expression is elevated in the colon of ulcerative colitis patients but is lost upon p53 inactivation during colon carcinogenesis. In mouse colon, Sestrin2 was critical for limiting ER stress and promoting the recovery of epithelial cells after inflammatory injury. During colitis-promoted tumorigenesis, Sestrin2 was shown to be an important mediator of p53’s control over mTORC1 signaling and tumor cell growth. These results highlight Sestrin2 as a novel tumor suppressor, whose downregulation can accelerate both colitis and colon carcinogenesis

    Iron Uptake via DMT1 Integrates Cell Cycle with JAK-STAT3 Signaling to Promote Colorectal Tumorigenesis

    Get PDF
    Dietary iron intake and systemic iron balance are implicated in colorectal cancer (CRC) development, but the means by which iron contributes to CRC are unclear. Gene expression and functional studies demonstrated that the cellular iron importer, divalent metal transporter 1 (DMT1), is highly expressed in CRC through hypoxia-inducible factor 2alpha-dependent transcription. Colon-specific Dmt1 disruption resulted in a tumor-selective inhibitory effect of proliferation in mouse colon tumor models. Proteomic and genomic analyses identified an iron-regulated signaling axis mediated by cyclin-dependent kinase 1 (CDK1), JAK1, and STAT3 in CRC progression. A pharmacological inhibitor of DMT1 antagonized the ability of iron to promote tumor growth in a CRC mouse model and a patient-derived CRC enteroid orthotopic model. Our studies implicate a growth-promoting signaling network instigated by elevated intracellular iron levels in tumorigenesis, offering molecular insights into how a key dietary component may contribute to CRC

    <em>In vitro</em> Organoid Culture of Primary Mouse Colon Tumors

    No full text

    Functions and Implications of Autophagy in Colon Cancer

    No full text
    Autophagy is an essential function to breakdown cellular proteins and organelles to recycle for new nutrient building blocks. In colorectal cancer, the importance of autophagy is becoming widely recognized as it demonstrates both pro- and anti-tumorigenic functions. In colon cancer, cell autonomous and non-autonomous roles for autophagy are essential in growth and progression. However, the mechanisms downstream of autophagy (to reduce or enhance tumor growth) are not well known. Additionally, the signals that activate and coordinate autophagy for tumor cell growth and survival are not clear. Here, we highlight the context- and cargo-dependent role of autophagy in proliferation, cell death, and cargo breakdown
    • …
    corecore