13 research outputs found

    Time-Resolved Transcriptome Analysis of Bacillus subtilis Responding to Valine, Glutamate, and Glutamine

    Get PDF
    Microorganisms can restructure their transcriptional output to adapt to environmental conditions by sensing endogenous metabolite pools. In this paper, an Agilent customized microarray representing 4,106 genes was used to study temporal transcript profiles of Bacillus subtilis in response to valine, glutamate and glutamine pulses over 24 h. A total of 673, 835, and 1135 amino-acid-regulated genes were identified having significantly changed expression at one or more time points in response to valine, glutamate, and glutamine, respectively, including genes involved in cell wall, cellular import, metabolism of amino-acids and nucleotides, transcriptional regulation, flagellar motility, chemotaxis, phage proteins, sporulation, and many genes of unknown function. Different amino acid treatments were compared in terms of both the global temporal profiles and the 5-minute quick regulations, and between-experiment differential genes were identified. The highlighted genes were analyzed based on diverse sources of gene functions using a variety of computational tools, including T-profiler analysis, and hierarchical clustering. The results revealed the common and distinct modes of action of these three amino acids, and should help to elucidate the specific signaling mechanism of each amino acid as an effector

    FBP1 Is an Interacting Partner of Menin

    Get PDF
    Multiple endocrine neoplasia type 1 (MEN1) is a syndrome characterized by tumors in multiple endocrine tissues such as the parathyroid glands, the pituitary gland, and the enteropancreatic neuroendocrine tissues. MEN1 is usually caused by mutations in the MEN1 gene that codes for the protein menin. Menin interacts with proteins that regulate transcription, DNA repair and processing, and maintenance of cytoskeletal structure. We describe the identification of FBP1 as an interacting partner of menin in a large-scale pull-down assay that also immunoprecipitated RBBP5, ASH2, and LEDGF, which are members of complex proteins associated with SET1 (COMPASS), a protein complex that methylates histone H3. This interaction was confirmed by coimmunoprecipitation and Flag-pull-down assays. Furthermore, menin localized to the FUSE site on the MYC promoter, a site that is transactivated by FBP1. This investigation therefore places menin in a pathway that regulates MYC gene expression and has important implications for the biological function of menin
    corecore