112 research outputs found
What Happens to bone health during and after spaceflight?
Weightless conditions of space flight accelerate bone loss. There are no reports to date that address whether the bone that is lost during spaceflight could ever be recovered. Spaceinduced bone loss in astronauts is evaluated at the Johnson Space Center (JSC) by measurement of bone mineral density (BMD) by Dual-energy x-ray absorptiometry (DXA) scans. Astronauts are routinely scanned preflight and at various time points postflight (greater than or equal to Return+2 days). Two sets of BMD data were used to model spaceflight-induced loss and skeletal recovery in crewmembers following long-duration spaceflight missions (4-6 months). Group I was from astronauts (n=7) who were systematically scanned at multiple time points during the postflight period as part of a research protocol to investigate skeletal recovery. Group II came from a total of 49 sets of preflight and postflight data obtained by different protocols. These data were from 39 different crewmembers some of whom served on multiple flights. Changes in BMD (between pre- and postflight BMD) were plotted as a function of time (days-after-landing); plotted data were fitted to an exponential equation which enabled estimations of i) BMD change at day 0 after landing and ii) the number of days by which 50% of the lost bone is recovered (half-life). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. There was consistency between the models for BMD recovery. Based upon the exponential model of BMD restoration, recovery following long-duration missions appears to be substantially complete in crewmembers within 36 months following return to Earth
Adaptation of the Skeletal System during Long-duration Spaceflight
This review will highlight evidence from crew members flown on space missions greater than 90 days to suggest that the adaptations of the skeletal system to mechanical unloading may predispose crew members to an accelerated onset of osteoporosis after return to Earth. By definition, osteoporosis is a skeletal disorder - characterized by low bone mineral density and structural deterioration - that reduces the ability of bones to resist fracture under the loading of normal daily activities. Involutional or agerelated osteoporosis is readily recognized as a syndrome afflicting the elderly population because of the insipid and asymptomatic nature of bone loss that does not typically manifest as fractures until after age approximately 60. It is not the thesis of this review to suggest that spaceflight-induced bone loss is similar to bone loss induced by metabolic bone disease; rather this review draws parallels between the rapid and earlier loss in females that occurs with menopause and the rapid bone loss in middle-aged crew members that occurs with spaceflight unloading and how the cumulative effects of spaceflight and ageing could be detrimental, particularly if skeletal effects are totally or partially irreversible. In brief, this report will provide detailed evidence that long-duration crew members, exposed to the weightlessness of space for the typical long-duration (4-6 months) mission on Mir or the International Space Station -- 1. Display bone resorption that is aggressive, that targets normally weight-bearing skeletal sites, that is uncoupled to bone formation and that results in areal BMD deficits that can range between 6-20% of preflight BMD; 2. Display compartment-specific declines in volumetric BMD in the proximal femur (a skeletal site of clinical interest) that significantly reduces its compressive and bending strength and which may account for the loss in hip bone strength (i.e., force to failure); 3. Recover BMD over a post-flight time period that exceeds spaceflight exposure but for which the restoration of whole bone strength remains an open issue and may involve structural alteration; and 4. Display risk factors for bone loss -- such as the negative calcium balance and down-regulated calcium-regulating hormones in response to bone atrophy -- that can be compounded by the constraints of conducting mission operations (inability to provide essential nutrients and vitamins). The full characterization of the skeletal response to mechanical unloading in space is not complete. In particular, countermeasures used to date have been inadequate and it is not yet known whether more appropriate countermeasures can prevent the changes in bone that have been found in previous flights, knowledge gaps related to the effects of prolonged (greater than or equal to 6 months) space exposure and to partial gravity environments are substantial, and longitudinal measurements on crew members after spaceflight are required to assess the full impact on skeletal recovery
Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss
Bisphosphonates as a Countermeasure to Space Flight Induced Bone Loss (Bisphosphonates) will determine whether antiresorptive agents, in conjunction with the routine inflight exercise program, will protect ISS crewmembers from the regional decreases in bone mineral density documented on previous ISS missions
Preliminary Results of Bisphosphonate ISS Flight Experiment
Bone loss has been recognized as a potential problem from the beginning of human spaceflight. With the spaceflight missions lasting 6 months to potentially 3 years or longer this issue has assumed increased significance. Detailed measurements from the Mir and ISS long duration missions have documented losses in bone mineral density (BMD) from the total skeleton and critical sub-regions. The most important losses are from the femoral hip averaging about -1.6%/mo integral to -2.3%/mo trabecular BMD. Importantly these studies have documented the wide range in individual response from -0.5 to -5%/mo in BMD. Given the small size of any expedition crew, the wide range of responses has to be considered in the implementation of any countermeasure. Assuming that it is unlikely that the susceptibility for bone loss in any given crewmember will be known, a suite of bone loss countermeasures will likely be needed to insure protection of all crewmembers. The hypothesis for this experiment is that the combined effect of anti-resorptive drugs plus the standard in-flight exercise regimen will have a measurable effect on preventing space flight induced bone loss and strength and will reduce renal stone risk. To date, 4 crewmembers have completed the flight portion of the protocol in which crewmembers take a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch. Compared to previous ISS crewmembers (n=14) not taking alendronate, DXA measurements of the total hip BMD were significantly changed from -1.1 0.5%/mo to 0.04 0.3%/mo (p<0.01); QCT-determined trabecular BMD of the total hip was significantly changed from -2.3 1.0%/mo to -0.3 1.6%/mo (p<0.01). Significance was calculated from a one-tailed t test. While these results are encouraging, the current n (4) is small, and the large SDs indicate that while the means are improved there is still high variability in individual response. Four additional crewmembers have been recruited to participate in this experiment, with expected completion of these flights by late 2011
Role of AMP-Activated Protein Kinase on Steroid Hormone Biosynthesis in Adrenal NCI-H295R Cells
Regulation of human androgen biosynthesis is poorly understood. However, detailed knowledge is needed to eventually solve disorders with androgen dysbalance. We showed that starvation growth conditions shift steroidogenesis of human adrenal NCI-H295R cells towards androgen production attributable to decreased HSD3B2 expression and activity and increased CYP17A1 phosphorylation and 17,20-lyase activity. Generally, starvation induces stress and energy deprivation that need to be counteracted to maintain proper cell functions. AMP-activated protein kinase (AMPK) is a master energy sensor that regulates cellular energy balance. AMPK regulates steroidogenesis in the gonad. Therefore, we investigated whether AMPK is also a regulator of adrenal steroidogenesis. We hypothesized that starvation uses AMPK signaling to enhance androgen production in NCI-H295R cells. We found that AMPK subunits are expressed in NCI-H295 cells, normal adrenal tissue and human as well as pig ovary cells. Starvation growth conditions decreased phosphorylation, but not activity of AMPK in NCI-H295 cells. In contrast, the AMPK activator 5-aminoimidazole-4-carboxamide (AICAR) increased AMPKα phosphorylation and increased CYP17A1-17,20 lyase activity. Compound C (an AMPK inhibitor), directly inhibited CYP17A1 activities and can therefore not be used for AMPK signaling studies in steroidogenesis. HSD3B2 activity was neither altered by AICAR nor compound C. Starvation did not affect mitochondrial respiratory chain function in NCI-H295R cells suggesting that there is no indirect energy effect on AMPK through this avenue. In summary, starvation-mediated increase of androgen production in NCI-H295 cells does not seem to be mediated by AMPK signaling. But AMPK activation can enhance androgen production through a specific increase in CYP17A1-17,20 lyase activity
Late Pleistocene mammalian assemblages of Southeast Asia: New dating, mortality profiles and evolution of the predator-prey relationships in an environmental context
Karstic sites have great potential for yielding data regarding changes in faunal communities in the Pleistocene of Southeast Asia. In this region, the majority of fossil-bearing deposits are karstic breccias, which generally demonstrate a complicated sedimentary history. While most of the mammalian assemblages recovered in these deposits are only composed of isolated teeth, their study remains essential for reconstructing paleoecology and paleoclimatology of the region. We analyzed the assemblages recovered in three mainland and two insular karstic sites: Tam Hang South and Nam Lot in northern Laos, Duoi U'Oi in northern Vietnam, Punung in central Java and Sibrambang in western Sumatra and obtained new chronologies for three of these sites so that their significance could be discussed within their correct chronological context. The resulting age ranges place the sites in MIS5 and M1S4. The comparative analysis of the faunas, in terms of taphonomy, taxonomic diversity and abundance, and mortality profiles (Cervus unicolor, Sus scrofa, Sus vittatus, rhinocerotids and Tapirus indicus), reveals marked differences in prey-predators (carnivores and/or humans) relationships in relation to habitat. The study of homininesbearing sites (Punung, Nam Lot, Duoi U'Oi) allows us to emphasize different interactions with large carnivores (felids, hyaenids, canids). (C) 2015 Elsevier B.V. All rights reserved
Antiresorptive Treatment for Spaceflight Induced Bone Atrophy - Preliminary Results
Detailed measurements from the Mir and ISS long duration missions have documented losses in bone mineral density (BMD) from critical skeletal sub-regions. The most important BMD losses are from the femoral hip, averaging about -1.6%/mo integral to -2.3%/mo trabecular. Importantly these studies have documented the wide range in individual BMD loss from -0.5 to -5%/mo. Associated elevated urinary Ca increases the risk of renal stone formation during flight, a serious impact to mission success. To date, countermeasures have not been satisfactory. The purpose of this study is to determine if the combined effect of anti-resorptive drugs plus the standard in-flight exercise regimen will have a measurable effect on preventing space flight induced bone loss (mass and strength) and reducing renal stone risk. To date, 4 crewmembers have completed the flight portion of the protocol in which crewmembers take a 70-mg alendronate tablet once a week before and during flight, starting 17 days before launch. Compared to previous ISS crewmembers (n=14) not taking alendronate, DXA measurements of the spine, femur neck and total hip were significantly improved from -0.8 +/- 0.5%/mo to 1.0 +/- 1.1%/mo, -1.1 +/- 0.5%/mo to -0.2 +/- 0.3%/mo, -1.1 +/- 0.5%/mo to 0.04 +/- 0.3%/mo respectively. QCT-determined trabecular BMD of the femur neck, trochanter and total hip were significantly improved from -2.7 +/- 1.9%/mo to -0.2 +/- 0.8%/mo, -2.2 +/- 0.9%/mo to -0.3 +/- 1.9%/mo and -2.3 +/- 1.0%/mo to -0.2 +/- 1.8%/mo respectively. Significance was calculated from a one-tailed t test. Resorption markers were unchanged, in contrast to measurements from previous ISS crewmembers that showed typical increases of 50-100% above baseline. Urinary Ca showed no increase compared to baseline levels, also distinct from the elevated levels of 50% or greater in previous crews. While these results are encouraging, the current n (4) is small, and the large SDs indicate that, while the means are improved, there is still high variability in individual response. Three additional crewmembers have been recruited to participate in this experiment, with expected completion in late 2011
Integrated Resistance and Aerobic Training Study - Sprint
Space flight causes reductions in fitness/health: (1) Cardiovascular -- reduced VO2max, cardiac output (2) Bone -- reduced bone mineral density (3) Muscle -- reduced mass, strength and endurance. Exercise is the primary countermeasure to protect against these changes and was made operational before completely mature. Research continues to identify most effective/efficient exercise programs. Crew medical tests (cardio, muscle, bone) do not yield sufficient information to fine tune the effectiveness of exercise programs, thus there is a need for more detailed testing aimed at identifying the most effective training program. The objective of this program was to obtain detailed information about crew physical fitness pre-and post-flight and evaluate new evidence based exercise prescription with higher intensity, lower duration and frequency
- …