11 research outputs found

    Third BNT162b2 Vaccine Booster Dose against SARS-CoV-2-Induced Antibody Response among Healthcare Workers

    No full text
    This study assessed humoral response to the third BNT162b2 dose among healthcare workers (HCW). This prospective cohort study of HCW tested for anti-spike antibodies (LIAISON SARS-CoV-2 S1/S2 IgG assay) at 1, 3, 6, 9, and 12 months after receiving the second BNT162b2 vaccine dose (tests 1, 2, 3, 4, and 5, respectively). A third (booster) vaccination dose was introduced before test 4. Linear regression model was used to determine the humoral response following vaccine doses. For each serology test, changes in log-transformed antibody concentrations over time, adjusted for age, sex, underlying diseases, steroid treatment, and smoking were described using the general linear mix model. Serology tests were performed at 3, 6, 9, and 12 months after the second vaccine dose in 1113, 1058, 986, and 939 participants, respectively. The third dose was received by 964 participants before the 9-month tests, 797 of whom participated in the 9- and 12-month serology tests. A significant inverse correlation was noted between time from third dose and antibody concentrations (Spearman correlation −0.395; p < 0.001). Age (p < 0.0001; CI 95% −0.005–−0.004), heart disease (p < 0.0001; CI 95% −0.177–−0.052), immunodeficiency (p < 0.0001; CI 95% 0.251–−0.106), and smoking (p < 0.0001; CI 95% −0.122–−0.040) were significantly associated with decreased antibody concentrations. Female sex (p = 0.03; CI 95% 0.013–0.066) was associated with increased antibody concentrations. The third booster dose had a better effect on immunogenicity, with higher antibody concentrations among tested HCW. Heart disease, smoking, and other known risk factors were associated with decreased antibody concentrations

    Immunogenicity and SARS-CoV-2 Infection following the Fourth BNT162b2 Booster Dose among Health Care Workers

    No full text
    Introduction: The fourth SARS-CoV-2 vaccine dose was found to protect against infection and more importantly against severe disease and death. It was also shown that the risk of symptomatic or severe disease was related to the antibody levels after vaccination or infection, with lower protection against the BA.4 BA.5 Omicron variants. The aim of our study was to assess the impact of the fourth dose on infection and perception of illness seriousness among healthcare workers (HCWs) at a tertiary health care campus in Haifa, Israel, and to investigate the possible protective effect of antibody levels against infection. Methods: We conducted a prospective cohort study among fully vaccinated HCWs and retired employees at Rambam Healthcare Campus (RHCC), a tertiary hospital in northern Israel. Participants underwent serial serological tests at 1, 3, 6, 9, 12 and 18 months following the second BNT162b2 vaccine dose. Only a part of the participants chose to receive the fourth vaccine. A multivariable logistic regression was conducted to test the adjusted association between vaccination, and the risk of infection with SARS-CoV-2. Kaplan–Meier SARS-CoV-2 free “survival” analysis was conducted to compare the waning effect of the first and second, third and fourth vaccines. Receiver Operating Characteristic (ROC) curve was plotted for different values of the sixth serology to identify workers at risk for disease. Results: Disease occurrence was more frequent among females, people age 40-50 years old and those with background chronic lung disease. The fourth vaccine was found to have better protection against infection, compared to the third vaccine; however, it also had a faster waning immunity compared to the third vaccine dose. Antibody titer of 955 AU/mL was found as a cutoff protecting from infection. Conclusions: We found that the fourth vaccine dose had a protective effect, but shorter than the third vaccine dose. Cutoff point of 955 AU/mL was recognized for protection from illness. The decision to vaccinate the population with a booster dose should consider other factors, including the spread of disease at the point, chronic comorbidities and age, especially during shortage of vaccine supply

    A host-protein based assay to differentiate between bacterial and viral infections in preschool children (OPPORTUNITY) : A double-blind, multicentre, validation study

    No full text
    BACKGROUND: A physician is frequently unable to distinguish bacterial from viral infections. ImmunoXpert is a novel assay combining three proteins: tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), interferon gamma induced protein-10 (IP-10), and C-reactive protein (CRP). We aimed to externally validate the diagnostic accuracy of this assay in differentiating between bacterial and viral infections and to compare this test with commonly used biomarkers. METHODS: In this prospective, double-blind, international, multicentre study, we recruited children aged 2-60 months with lower respiratory tract infection or clinical presentation of fever without source at four hospitals in the Netherlands and two hospitals in Israel. A panel of three experienced paediatricians adjudicated a reference standard diagnosis for all patients (ie, bacterial or viral infection) using all available clinical and laboratory information, including a 28-day follow-up assessment. The panel was masked to the assay results. We identified majority diagnosis when two of three panel members agreed on a diagnosis and unanimous diagnosis when all three panel members agreed on the diagnosis. We calculated the diagnostic performance (ie, sensitivity, specificity, positive predictive value, and negative predictive value) of the index test in differentiating between bacterial (index test positive) and viral (index test negative) infection by comparing the test classification with the reference standard outcome. FINDINGS: Between Oct 16, 2013 and March 1, 2015, we recruited 777 children, of whom 577 (mean age 21 months, 56% male) were assessed. The majority of the panel diagnosed 71 cases as bacterial infections and 435 as viral infections. In another 71 patients there was an inconclusive panel diagnosis. The assay distinguished bacterial from viral infections with a sensitivity of 86¡7% (95% CI 75¡8-93¡1), a specificity of 91¡1% (87¡9-93¡6), a positive predictive value of 60¡5% (49¡9-70¡1), and a negative predictive value of 97¡8% (95¡6-98¡9). In the more clear cases with unanimous panel diagnosis (n=354), sensitivity was 87¡8% (74¡5-94¡7), specificity 93¡0% (89¡6-95¡3), positive predictive value 62¡1% (49¡2-73¡4), and negative predictive value 98¡3% (96¡1-99¡3). INTERPRETATION: This external validation study shows the diagnostic value of a three-host protein-based assay to differentiate between bacterial and viral infections in children with lower respiratory tract infection or fever without source. This diagnostic based on CRP, TRAIL, and IP-10 has the potential to reduce antibiotic misuse in young children. FUNDING: MeMed Diagnostics

    Invasive Fungal Diseases in Hospitalized Patients with COVID-19 in Israel: A Multicenter Cohort Study

    No full text
    Highly variable estimates of COVID-19-associated fungal diseases (IFDs) have been reported. We aimed to determine the incidence of clinically important fungal diseases in hospitalized COVID-19 patients during the first year of the pandemic. We performed a multicenter survey of IFDs among patients hospitalized with COVID-19 in 13 hospitals in Israel between February 2020 and May 2021. COVID-19-associated pulmonary mold disease (PMD) and invasive candidiasis (IC) were defined using ECMM/ISHAM and EORTC/MSG criteria, respectively. Overall rates of IC and PMD among patients with critical COVID-19 were 10.86 and 10.20 per 1000 admissions, respectively, with significant variability among medical centers. PMD rates were significantly lower in centers where galactomannan was a send-out test versus centers with on-site testing (p = 0.035). The 30-day mortality rate was 67.5% for IC and 57.5% for PMD. Treatment with an echinocandin for IC or an extended-spectrum azole for PMD was associated with significantly lower mortality rates (adjusted hazard ratio [95% confidence interval], 0.26 [0.07–0.91] and 0.23 [0.093–0.57], respectively). In this multicenter national survey, variable rates of PMD were associated with on-site galactomannan testing, suggesting under-detection in sites lacking this capacity. COVID-19-related IFDs were associated with high mortality rates, which were reduced with appropriate antifungal therapy

    Antibiotic Overuse in Children with Respiratory Syncytial Virus Lower Respiratory Tract Infection

    No full text
    BACKGROUND: Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infections (LRTI) during the first year of life. Antibiotic treatment is recommended in cases suspected of bacterial coinfection. The aim of this prospective study was to estimate the incidence of bacterial coinfections and the amount of antibiotic overuse in children infected with RSV using expert panel diagnosis. METHODS: Children 1 month of age and over with LRTI or fever without source were prospectively recruited in hospitals in the Netherlands and Israel. Children with confirmed RSV infection by Polymerase Chain Reaction (PCR) on nasal swabs were evaluated by an expert panel as reference standard diagnosis. Three experienced pediatricians distinguished bacterial coinfection from simple viral infection using all available clinical information, including all microbiologic evaluations and a 28-day follow-up evaluation. RESULTS: A total of 188 children (24% of all 784 recruited patients) were positive for RSV. From these, 92 (49%) were treated with antibiotics. All 27 children (29%) with bacterial coinfection were treated with antibiotics. Fifty-seven patients (62%) were treated with antibiotics without a diagnosis of bacterial coinfection. In 8 of the 92 (9%), the expert panel could not distinguish simple viral infection from bacterial coinfection. CONCLUSION: This is the first prospective international multicenter RSV study using an expert panel as reference standard to identify children with and without bacterial coinfection. All cases of bacterial coinfections are treated, whereas as many as one-third of all children with RSV LRTI are treated unnecessarily with antibiotics

    Antibiotic Overuse in Children with Respiratory Syncytial Virus Lower Respiratory Tract Infection

    No full text
    BACKGROUND: Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infections (LRTI) during the first year of life. Antibiotic treatment is recommended in cases suspected of bacterial coinfection. The aim of this prospective study was to estimate the incidence of bacterial coinfections and the amount of antibiotic overuse in children infected with RSV using expert panel diagnosis. METHODS: Children 1 month of age and over with LRTI or fever without source were prospectively recruited in hospitals in the Netherlands and Israel. Children with confirmed RSV infection by Polymerase Chain Reaction (PCR) on nasal swabs were evaluated by an expert panel as reference standard diagnosis. Three experienced pediatricians distinguished bacterial coinfection from simple viral infection using all available clinical information, including all microbiologic evaluations and a 28-day follow-up evaluation. RESULTS: A total of 188 children (24% of all 784 recruited patients) were positive for RSV. From these, 92 (49%) were treated with antibiotics. All 27 children (29%) with bacterial coinfection were treated with antibiotics. Fifty-seven patients (62%) were treated with antibiotics without a diagnosis of bacterial coinfection. In 8 of the 92 (9%), the expert panel could not distinguish simple viral infection from bacterial coinfection. CONCLUSION: This is the first prospective international multicenter RSV study using an expert panel as reference standard to identify children with and without bacterial coinfection. All cases of bacterial coinfections are treated, whereas as many as one-third of all children with RSV LRTI are treated unnecessarily with antibiotics

    Nationwide Outbreak of Candida auris Infections Driven by COVID-19 Hospitalizations, Israel, 2021–2022

    No full text
    We report an outbreak of Candida auris across multiple healthcare facilities in Israel. For the period of May 2014–May 2022, a total of 209 patients with C. auris infection or colonization were identified. The C. auris incidence rate increased 30-fold in 2021 (p = 0.00015), corresponding in time with surges of COVID-19–related hospitalization. Multilocus sequence typing revealed hospital-level outbreaks with distinct clones. A clade III clone, imported into Israel in 2016, accounted for 48.8% of typed isolates after January 2021 and was more frequently resistant to fluconazole (100% vs. 63%; p = 0.00017) and voriconazole (74% vs. 5.2%; p<0.0001) than were non–clade III isolates. A total of 23% of patients had COVID-19, and 78% received mechanical ventilation. At the hospital level, outbreaks initially involved mechanically ventilated patients in specialized COVID-19 units and then spread sequentially to ventilated non–COVID-19 patients and nonventilated patients

    Validation of a Novel Assay to Distinguish Bacterial and Viral Infections

    No full text
    Reliably distinguishing bacterial from viral infections is often challenging, leading to antibiotic misuse. A novel assay that integrates measurements of blood-borne host-proteins (tumor necrosis factor-related apoptosis-inducing ligand, interferon Îł-induced protein-10, and C-reactive protein [CRP]) was developed to assist in differentiation between bacterial and viral disease
    corecore