48 research outputs found

    Genetic programming of the visual forebrain in the absence of retinal input

    Get PDF

    Differential Inhibition of Human Atherosclerotic Plaque-Induced Platelet Activation by Dimeric GPVI-Fc and Anti-GPVI Antibodies: Functional and Imaging Studies.

    Get PDF
    BACKGROUND: Glycoprotein VI (GPVI) is the essential platelet collagen receptor in atherothrombosis, but its inhibition causes only a mild bleeding tendency. Thus, targeting this receptor has selective antithrombotic potential. OBJECTIVES: This study sought to compare compounds interfering with platelet GPVI-atherosclerotic plaque interaction to improve current antiatherothrombotic therapy. METHODS: Human atherosclerotic plaque-induced platelet aggregation was measured in anticoagulated blood under static and arterial flow conditions (550/s, 1,100/s, and 1,500/s). Inhibition by dimeric GPVI fragment crystallizable region of IgG (Fc) masking GPVI binding sites on collagen was compared with that of 3 anti-GPVI antibodies: BLO8-1, a human domain antibody; 5C4, a fragment antigen-binding (Fab fragment) of monoclonal rat immunoglobulin G; and m-Fab-F, a human recombinant sFab against GPVI dimers. RESULTS: GPVI-Fc reduced plaque-triggered platelet aggregation in static blood by 51%, BLO8-1 by 88%, and 5C4 by 93%. Under arterial flow conditions, BLO8-1 and 5C4 almost completely inhibited platelet aggregation while preserving platelet adhesion on plaque. Inhibition by GPVI-Fc, even at high concentrations, was less marked but increased with shear rate. Advanced optical imaging revealed rapid persistent GPVI-Fc binding to collagen under low and high shear flow, upstream and downstream of plaque fragments. At low shear particularly, platelets adhered in plaque flow niches to GPVI-Fc-free segments of collagen fibers and recruited other platelets onto aggregates via ADP and TxA2 release. CONCLUSIONS: Anti-GPVI antibodies inhibit atherosclerotic plaque-induced platelet aggregation under static and flow conditions more effectively than GPVI-Fc. However, potent platelet inhibition by GPVI-Fc at a higher shear rate (1,500/s) suggests localized antithrombotic efficacy at denuded or fissured stenotic high-risk lesions without systemic bleeding. The compound-specific differences have relevance for clinical trials targeting GPVI-collagen interaction combined with established antiplatelet therapies in patients with spontaneous plaque rupture or intervention-associated plaque injury.The study was supported by grants from advanceCOR GmbH (JJ), the August-Lenz foundation, the Deutsche Forschungsgemeinschaft SFB1123/Z01 (MB), and the British Heart Foundation (SMJ and RWF; grants RG/09/003/27122 and PG/10/011/28199). Two-photon laser scanning microscopy experiments have been supported by the Deutsche Forschungsgemeinschaft (INST 409/97-1) and the LMU.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.jacc.2015.03.57

    Retina-derived signals control pace of neurogenesis in visual brain areas but not circuit assembly

    No full text
    Abstract Brain development is orchestrated by both innate and experience-dependent mechanisms, but their relative contributions are difficult to disentangle. Here we asked if and how central visual areas are altered in a vertebrate brain depleted of any and all signals from retinal ganglion cells throughout development. We transcriptionally profiled neurons in pretectum, thalamus and other retinorecipient areas of larval zebrafish and searched for changes in lakritz mutants that lack all retinal connections. Although individual genes are dysregulated, the complete set of 77 neuronal types develops in apparently normal proportions, at normal locations, and along normal differentiation trajectories. Strikingly, the cell-cycle exits of proliferating progenitors in these areas are delayed, and a greater fraction of early postmitotic precursors remain uncommitted or are diverted to a pre-glial fate. Optogenetic stimulation targeting groups of neurons normally involved in processing visual information evokes behaviors indistinguishable from wildtype. In conclusion, we show that signals emitted by retinal axons influence the pace of neurogenesis in visual brain areas, but do not detectably affect the specification or wiring of downstream neurons

    A Live-Cell Imaging Approach for Measuring DNA Replication Rates

    No full text
    Summary: We describe a simple and direct approach to measure the progression of single DNA replication forks in living cells by monitoring two fluorescently labeled loci downstream of an origin of replication. We employ this approach to investigate the roles of several leading and lagging strand factors in overall replisome function and show that fork progression is strongly dependent on proper maturation of Okazaki fragments. We also demonstrate how related cellular phenotypes, such as cell-cycle progression and the dynamics of sister chromatid cohesion, may be simultaneously monitored and correlated to DNA replication at the single-cell level. : Dovrat et al. develop a simple approach based on live-cell imaging to measure the progression rates of single DNA replication forks at specific loci while simultaneously examining cell-cycle progression and sister chromatid cohesion. The rate of DNA replication is shown to be strongly dependent on full maturation of Okazaki fragments. Keywords: DNA replication, live-cell imaging, FROS, Okazaki fragment maturation, sister chromatid cohesio

    Visual recognition of social signals by a tectothalamic neural circuit

    Get PDF
    Social affiliation emerges from individual-level behavioural rules that are driven by conspecific signals1,2,3,4,5. Long-distance attraction and short-distance repulsion, for example, are rules that jointly set a preferred interanimal distance in swarms6,7,8. However, little is known about their perceptual mechanisms and executive neural circuits3. Here we trace the neuronal response to self-like biological motion9,10, a visual trigger for affiliation in developing zebrafish2,11. Unbiased activity mapping and targeted volumetric two-photon calcium imaging revealed 21 activity hotspots distributed throughout the brain as well as clustered biological-motion-tuned neurons in a multimodal, socially activated nucleus of the dorsal thalamus. Individual dorsal thalamus neurons encode local acceleration of visual stimuli mimicking typical fish kinetics but are insensitive to global or continuous motion. Electron microscopic reconstruction of dorsal thalamus neurons revealed synaptic input from the optic tectum and projections into hypothalamic areas with conserved social function12,13,14. Ablation of the optic tectum or dorsal thalamus selectively disrupted social attraction without affecting short-distance repulsion. This tectothalamic pathway thus serves visual recognition of conspecifics, and dissociates neuronal control of attraction from repulsion during social affiliation, revealing a circuit underpinning collective behaviour.publishe
    corecore